Question

Consider the following wave function: Psi(x,t) = Asin(2piBx)e^(-iCt) for 0<x<1/2B Psi(x,t) = 0 for all other...

Consider the following wave function:

Psi(x,t) = Asin(2piBx)e^(-iCt) for 0<x<1/2B

Psi(x,t) = 0 for all other x

where A,B and C are some real, positive constants.

a) Normalize Psi(x,t)

b) Calculate the expectation values of the position operator and its square. Calculate the standard deviation of x.

c) Calculate the expectation value of the momentum operator and its square. Calculate the standard deviation of p.

d) Is what you found in b) and c) consistent with the uncertainty principle? Explain.

2. Show the time derivative of the expectation value of momentum is equal to (up to a minus sign) the expectation value of the x-derivative of the potential energy.

Thank you!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Normalize the following wave function (3) Ψ(x, t) = ( Ce−γx+iδt, x ≥ 0 0, x...
Normalize the following wave function (3) Ψ(x, t) = ( Ce−γx+iδt, x ≥ 0 0, x < 0 where γ and δ are some real constants and γ > 0.
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) =...
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) = Aeαx^2+iβt​​​​​​ with an energy eigenvalue of E0 = ħ2α/m a. Determine the potential in which this particle exists. Does this potential resemble any that you have seen before? b. Determine the normalization constant A for this wave function. c. Determine the expectation values of x, x2, p, and p2. d. Check the uncertainty principle Δx and Δp. Is their product consistent with the uncertainty...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x ≤ ∞. a) Draw this wavefunction, labeling the axes in terms of A and L. b) Find the relationship between A and L that satisfies the normalization condition. c) Calculate the approximate probability of finding the particle between positions x = −L and x = L. d) What are 〈x〉, 〈x^2〉, and σ_x ? (Hint: use shortcuts where possible). e) Find the minimum uncertainty...
For the wave function ψ(x) defined by ψ(x)= A(a-x),x<a ψ(x)=0, x>=a (a) Sketch ψ(x) and calculate...
For the wave function ψ(x) defined by ψ(x)= A(a-x),x<a ψ(x)=0, x>=a (a) Sketch ψ(x) and calculate the normalization constant A. ( b) Using Zettili’s conventions, find its Fourier transform φ(k) and sketch it. (c) Using the ψ(x) and φ(k), make reasonable estimates for ∆x and ∆k. Using p = ħk, check whether your results are compatible with the uncertainty principle.
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x...
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x > 0 (a) Find the critical numbers of f. (Enter your answers as a comma-separated list.) x = (b) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) increasing     decreasing   question#2: Consider the following function. f(x) = 2x + 1,     x ≤ −1 x2 − 2,     x...
Consider the vector space P2 := P2(F) and its standard basis α = {1,x,x^2}. 1Prove that...
Consider the vector space P2 := P2(F) and its standard basis α = {1,x,x^2}. 1Prove that β = {x−1,x^2 −x,x^2 + x} is also a basis of P2 2Given the map T : P2 → P2 defined by T(a + bx + cx2) = (a + b + c) + (a + 2b + c)x + (b + c)x2 compute [T]βα. 3 Is T invertible? Why 4 Suppose the linear map U : P2 → P2 has the matrix representation...
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider...
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider the equation Utt + aut = c^2Uxx , which represents a damped version of the wave equation (telegrapher’s equation). Assuming Dirichlet boundary conditions u(0, t) = u(1, t) = 0, on the infinite strip 0 ≤ x ≤ 1, t ≥ 0, with initial conditions u(x, 0) = f(x), ut(x, 0) = 0, complete the following: (a) Find all separable solutions (of the form...
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase...
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase plane by assuming proper parameters of c. Do you have singular points with the cases of CENTER FOCUS, NODE and SADDLE ? Are those stable? asymptotic stable or unstable? b) When c = 0, plot the phase plane and find these singular points
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT