Question

Normalize the following wave function (3) Ψ(x, t) = ( Ce−γx+iδt, x ≥ 0 0, x...

Normalize the following wave function (3)
Ψ(x, t) = (
Ce−γx+iδt, x ≥ 0
0, x < 0
where γ and δ are some real constants and γ > 0.

Homework Answers

Answer #1

for

for

Now the normalization condition is,

Here,

for

for

So,

So, the normalized wavefunction is,

for

for

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an impenetrable box. (a) Show that the real and imaginary parts of Ψ(x,t) , separately, can be written as the sum of two travelling waves. (b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.
A particular positron is restricted to one dimension and has a wave function given by ψ(x)=...
A particular positron is restricted to one dimension and has a wave function given by ψ(x)= Ax between x = 0 and x = 1.00 nm, and ψ(x) = 0 elsewhere. Assume the normalization constant A is a positive, real constant. (a) What is the value of A (in nm−3/2)? nm−3/2 (b) What is the probability that the particle will be found between x = 0.290 nm and x = 0.415 nm? P = (c) What is the expectation value...
Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x)...
Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x) in the interval x to x+dx. Consider a particle in a box with rigid walls at x=0 and x=L. Let the particle be in the first excited level and use ψn(x)=2L−−√sinnπxL For which values of x, if any, in the range from 0 to L is the probability of finding the particle zero? For which v alues of x is the probability highest?Express your...
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
A wave on a string has a wave function given by: y (x, t) = (0.300m)...
A wave on a string has a wave function given by: y (x, t) = (0.300m) sin [(4.35 m^-1 ) x + (1.63 s^-1 ) t] where t is expressed in seconds and x in meters. Determine: (10 points) a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave
A source placed at x = 0 produces the following wave: y=ym*sin2π(8t−x/3), where t is in...
A source placed at x = 0 produces the following wave: y=ym*sin2π(8t−x/3), where t is in seconds and x is in meters . A second identical source is placed on the x-axis at a point that will cause the two waves produced to interfere destructively. What is the least possible distance between the two sources?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT