Question

For the wave function ψ(x) defined by ψ(x)= A(a-x),x<a ψ(x)=0, x>=a (a) Sketch ψ(x) and calculate...

For the wave function ψ(x) defined by

ψ(x)= A(a-x),x<a

ψ(x)=0, x>=a

(a) Sketch ψ(x) and calculate the normalization constant A. (

b) Using Zettili’s conventions, find its Fourier transform φ(k) and sketch it.

(c) Using the ψ(x) and φ(k), make reasonable estimates for ∆x and ∆k. Using p = ħk, check whether your results are compatible with the uncertainty principle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x ≤ ∞. a) Draw this wavefunction, labeling the axes in terms of A and L. b) Find the relationship between A and L that satisfies the normalization condition. c) Calculate the approximate probability of finding the particle between positions x = −L and x = L. d) What are 〈x〉, 〈x^2〉, and σ_x ? (Hint: use shortcuts where possible). e) Find the minimum uncertainty...
            An electron is confined between x = 0 and x = L. The wave function...
            An electron is confined between x = 0 and x = L. The wave function of the electron is ψ(x) = A sin(2πx/L). The wave function is zero for the regions x < 0 and x > L. (a) Determine the normalization constant A. (b) What is the probability of finding the electron in the region 0 ≤ x ≤ L/8? { (2/L)1/2, 4.54%}
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) =...
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) = Aeαx^2+iβt​​​​​​ with an energy eigenvalue of E0 = ħ2α/m a. Determine the potential in which this particle exists. Does this potential resemble any that you have seen before? b. Determine the normalization constant A for this wave function. c. Determine the expectation values of x, x2, p, and p2. d. Check the uncertainty principle Δx and Δp. Is their product consistent with the uncertainty...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x...
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x / ℏ). Where a and P0 are constant; (e≃2,71 will be taken). a) Find the normalization constant N? b) Calculate the probability that the particle is between [-a / 2, a / 2]? c) Find the mean momentum and the mean kinetic energy of the particle in the x direction.
A particular positron is restricted to one dimension and has a wave function given by ψ(x)=...
A particular positron is restricted to one dimension and has a wave function given by ψ(x)= Ax between x = 0 and x = 1.00 nm, and ψ(x) = 0 elsewhere. Assume the normalization constant A is a positive, real constant. (a) What is the value of A (in nm−3/2)? nm−3/2 (b) What is the probability that the particle will be found between x = 0.290 nm and x = 0.415 nm? P = (c) What is the expectation value...
7. A particle of mass m is described by the wave function ψ ( x) =...
7. A particle of mass m is described by the wave function ψ ( x) = 2a^(3/2)*xe^(−ax) when x ≥ 0 0 when x < 0 (a) (2 pts) Verify that the normalization constant is correct. (b) (3 pts) Sketch the wavefunction. Is it smooth at x = 0? (c) (2 pts) Find the particle’s most probable position. (d) (3 pts) What is the probability that the particle would be found in the region (0, 1/a)? 8. Refer to the...