Question

Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...

Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1.

(1) What is the normalization constant, C?
(2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.)
(3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)?
(4) Compute the expectation value of x as a function of time for this ψ(x, t)
(5) Compute the expectation value of p as a function of time for ψ(x, t)
(6) Compare how 〈p〉 and 〈x〉 are related to what one would expect classically?
(7) Compute the expectation value of the energy as a function of time.

Homework Answers

Answer #1

1) The normalisation condition is

This gives

Hence the normalization constant is

2) Using the trigonometric identity

one can write

And noting that the eigenstates of infinite square well potential for a = 1are

we can write the given wave function as a linear combination of the eigenstates of the infinite square well as follows

3) The wave function as a function of time is

where

and

4) Note that

Hence

where

Therefore

The first term gives

Similarly

and

Therefore the expectation value of x as a function of time is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
A particular positron is restricted to one dimension and has a wave function given by ψ(x)=...
A particular positron is restricted to one dimension and has a wave function given by ψ(x)= Ax between x = 0 and x = 1.00 nm, and ψ(x) = 0 elsewhere. Assume the normalization constant A is a positive, real constant. (a) What is the value of A (in nm−3/2)? nm−3/2 (b) What is the probability that the particle will be found between x = 0.290 nm and x = 0.415 nm? P = (c) What is the expectation value...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
Normalize the following wave function (3) Ψ(x, t) = ( Ce−γx+iδt, x ≥ 0 0, x...
Normalize the following wave function (3) Ψ(x, t) = ( Ce−γx+iδt, x ≥ 0 0, x < 0 where γ and δ are some real constants and γ > 0.
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an impenetrable box. (a) Show that the real and imaginary parts of Ψ(x,t) , separately, can be written as the sum of two travelling waves. (b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.
Differential equations Given that x1(t) = cos t is a solution of (sin t)x′′ − 2(cos...
Differential equations Given that x1(t) = cos t is a solution of (sin t)x′′ − 2(cos t)x′ − (sin t)x = 0, find a second linearly independent solution of this equation.
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find the open interval(s) on which the function is increasing or decreasing. (Enter your answers using interval notation.) (B) Apply the First Derivative Test to identify all relative extrema.
Consider the following vector function. r(t) = 6t2, sin(t) − t cos(t), cos(t) + t sin(t)...
Consider the following vector function. r(t) = 6t2, sin(t) − t cos(t), cos(t) + t sin(t) ,    t > 0 (a) Find the unit tangent and unit normal vectors T(t) and N(t). T(t) = N(t) = (b) Use this formula to find the curvature. κ(t) =