Question

Let V1 = 2 i + j, and V2 = -i + 3 j. Select all...

Let V1 = 2 i + j, and V2 = -i + 3 j. Select all the correct statements bellow

a. angle of (V1) > angle of (V2)

b. angle of (V1 - V2) > angle of (V2 - V1)

c. magnitude of (V2-V1) = magnitude of (V1 - V2)

d. magnitude of (V1) + magnitude of (V2) > magnitude of (V1 + V2)

thank you so much

Homework Answers

Answer #1

Let me know if you need any further clarification.

Please upvote if you have understood the solution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If V1 = - i and the magnitude and angle of V2 are 2 and rad,...
If V1 = - i and the magnitude and angle of V2 are 2 and rad, respectively, what option shows the magnitude and angle of V1 - V2? Hint: Do the vector resolution for V2 and find its components. Then, calculate V1 - V2 using the components of V1 and V2, and finally find the magnitude and the angle. Group of answer choices A. magnitude = 2.91, angle = 20.1 deg B. magnitude = 1.2, angle = 53.9 deg C....
2. Two vectors, ~v1 and ~v2. ~v1 has a length of 12 and is oriented at...
2. Two vectors, ~v1 and ~v2. ~v1 has a length of 12 and is oriented at an angle θ1 = 30o relative to the positive x−axis. ~v2 has a length of 6 and is oriented at an angle θ2 = 0o relative to the positive x−axis (it is aligned with the positive x−axis) a. What are the magnitude and direction (angle) of the sum of the two vectors ( 1+2 ~v = ~v1 + ~v2)? b. What are the magnitude...
5. Let v1 = (1/3,−2/3,2/3), v2 = (2/3,−1/3,−2/3) and v3 = (2/3,2/3,1/3). (a) Verify that v1,...
5. Let v1 = (1/3,−2/3,2/3), v2 = (2/3,−1/3,−2/3) and v3 = (2/3,2/3,1/3). (a) Verify that v1, v2, v3 is an orthonormal basis of R 3 . (b) Determine the coordinates of x = (9, 10, 11), v1 − 4v2 and v3 with respect to v1, v2, v3.
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that...
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that T(v1)=(-1,2,0) And T(v2)=(0,-3,5), find T(2,-3)
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the...
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the map dened by T x1 x2 x3 x4 = x1 −x2 + x4 x1 + x2 + x3 + x4 . (a) Show that T is a linear transformation. (b) Let u1 = 1 0 0 −1 , u2 = 0 1 −2 1 .Show that ( u1, u2) is a basis of kerT. (c) Show that imT = V2. (Hint: Compute T(e1) and...
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4...
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4 2 6], v3 =[5 -1 1], v4 =[0 -21 -9] Then H and K are subspaces of R3 . In fact, H and K are planes in R3 through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. w = { _______ }
2. Vector Practice a. Determine the magnitude and direction of the sum (V1+V2)of the two vectors...
2. Vector Practice a. Determine the magnitude and direction of the sum (V1+V2)of the two vectors V1=3i+2j and V2=4i+j b. Determine the components of a vector, with a magnitude of 10.0 and a direction of 40.0 degrees above the positive x-axis.
Let A = v1 v2 v3 v1 2 8 16 v2 8 0 4 v3 16...
Let A = v1 v2 v3 v1 2 8 16 v2 8 0 4 v3 16 4 1 be the ADJACENCY MATRIX for an undirected graph G. Solve the following: 1) Determine the number of edges of G 2) Determine the total degree of G 3) Determine the degree of each vertex of G 4) Determine the number of different walks of length 2 from vertex v3 to v1 5) Does G have an Euler circuit? Explain
1) Find the angle θ between the vectors a=9i−j−4k and b=2i+j−4k. 2)  Find two vectors v1 and...
1) Find the angle θ between the vectors a=9i−j−4k and b=2i+j−4k. 2)  Find two vectors v1 and v2 whose sum is <-5, 2> where v1 is parallel to <-3 ,0> while v2 is perpendicular to < -3,0>
Do the vectors v1 =   1 2 3   , v2 = ...
Do the vectors v1 =   1 2 3   , v2 =   √ 3 √ 3 √ 3   , v3   √ 3 √ 5 √ 7   , v4 =   1 0 0   form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 =   ...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT