Let H=Span{v1,v2} and
K=Span{v3,v4}, where
v1,v2,v3,v4 are given
below.
v1 = [3 2 5], v2 =[4...
Let H=Span{v1,v2} and
K=Span{v3,v4}, where
v1,v2,v3,v4 are given
below.
v1 = [3 2 5], v2 =[4 2 6], v3
=[5 -1 1], v4 =[0 -21 -9]
Then H and K are subspaces of R3 . In fact, H and K
are planes in R3 through the origin, and they intersect
in a line through 0. Find a nonzero vector w that
generates that line.
w = { _______ }
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3,
v3+v4, v4 is a...
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3,
v3+v4, v4 is a basis of V
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let
X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let
X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix whose columns are
⃗v1,⃗v2,⃗v3,⃗v4. Suppose further that every subset Y ⊂ V of size
two is linearly independent. Explain what form(s) rref(X), the
reduced row echelon form of X, must take in this case. Hint: you
won’t be able to pin down exact numbers for every entry of rref(X),
but you might know things like whether the entry can be zero or
not, etc.
convert the basis V1=(1,-1,0), v2=(0,1,-1), v3=(-1,1,-1)for R^3
into an orthonormal basis, using theGram-Schmidt process and the...
convert the basis V1=(1,-1,0), v2=(0,1,-1), v3=(-1,1,-1)for R^3
into an orthonormal basis, using theGram-Schmidt process and the
standard inner product in R^3
Let S =
{v1,v2,v3,v4,v5}
where v1= (1,−1,2,4), v2 = (0,3,1,2),
v3 = (3,0,7,14), v4 = (1,−1,2,0),...
Let S =
{v1,v2,v3,v4,v5}
where v1= (1,−1,2,4), v2 = (0,3,1,2),
v3 = (3,0,7,14), v4 = (1,−1,2,0),
v5 = (2,1,5,6). Find a subset of S that forms a basis
for span(S).
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5).
Let S=(v1,v2,v3,v4)
(1)find a basis for span(S)
(2)is the vector e1=(1,0,0,0) in...
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5).
Let S=(v1,v2,v3,v4)
(1)find a basis for span(S)
(2)is the vector e1=(1,0,0,0) in the span of S? Why?
Verify that the following vectors form an orthogonal list:
v1=1, 1, 2 v2= 2,0,-1] v3=1,...
Verify that the following vectors form an orthogonal list:
v1=1, 1, 2 v2= 2,0,-1] v3=1, −5, 2
A. Suppose that v1, v2, v3 are linearly independant and
w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether...
A. Suppose that v1, v2, v3 are linearly independant and
w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether w1, w2, w3 are
linear independent or linear deppendent.
B. Find the largest possible number of independent vectors
among:
v1=(1,-1,0,0), v2=(1,0,-1,0), v3=(1,0,0,-1), v4=(0,1,-1,0),
v5=(0,1,0,-1), v6=(0,0,1,-1)
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose that
A is a (3 × 4) matrix with the following properties: Av1 = 0, A(v1
+ 2v4) = 0, Av2 =[ 1 1 1 ] T , Av3 = [ 0 −1 −4
]T . Find a basis for N (A), and a basis for R(A). Fully
justify your answer.