Question

5. Let v1 = (1/3,−2/3,2/3), v2 = (2/3,−1/3,−2/3) and v3 = (2/3,2/3,1/3). (a) Verify that v1,...

5. Let v1 = (1/3,−2/3,2/3), v2 = (2/3,−1/3,−2/3) and v3 = (2/3,2/3,1/3).

(a) Verify that v1, v2, v3 is an orthonormal basis of R 3 .

(b) Determine the coordinates of x = (9, 10, 11), v1 − 4v2 and v3 with respect to v1, v2, v3.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4...
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4 2 6], v3 =[5 -1 1], v4 =[0 -21 -9] Then H and K are subspaces of R3 . In fact, H and K are planes in R3 through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. w = { _______ }
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a...
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a basis of V
Let A = v1 v2 v3 v1 2 8 16 v2 8 0 4 v3 16...
Let A = v1 v2 v3 v1 2 8 16 v2 8 0 4 v3 16 4 1 be the ADJACENCY MATRIX for an undirected graph G. Solve the following: 1) Determine the number of edges of G 2) Determine the total degree of G 3) Determine the degree of each vertex of G 4) Determine the number of different walks of length 2 from vertex v3 to v1 5) Does G have an Euler circuit? Explain
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix whose columns are ⃗v1,⃗v2,⃗v3,⃗v4. Suppose further that every subset Y ⊂ V of size two is linearly independent. Explain what form(s) rref(X), the reduced row echelon form of X, must take in this case. Hint: you won’t be able to pin down exact numbers for every entry of rref(X), but you might know things like whether the entry can be zero or not, etc.
convert the basis V1=(1,-1,0), v2=(0,1,-1), v3=(-1,1,-1)for R^3 into an orthonormal basis, using theGram-Schmidt process and the...
convert the basis V1=(1,-1,0), v2=(0,1,-1), v3=(-1,1,-1)for R^3 into an orthonormal basis, using theGram-Schmidt process and the standard inner product in R^3
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0),...
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0), v5 = (2,1,5,6). Find a subset of S that forms a basis for span(S).
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4) (1)find a basis for span(S) (2)is the vector e1=(1,0,0,0) in...
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4) (1)find a basis for span(S) (2)is the vector e1=(1,0,0,0) in the span of S? Why?
Verify that the following vectors form an orthogonal list: v1=1, 1, 2 v2= 2,0,-1]     v3=1,...
Verify that the following vectors form an orthogonal list: v1=1, 1, 2 v2= 2,0,-1]     v3=1, −5, 2
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether...
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether w1, w2, w3 are linear independent or linear deppendent. B. Find the largest possible number of independent vectors among: v1=(1,-1,0,0), v2=(1,0,-1,0), v3=(1,0,0,-1), v4=(0,1,-1,0), v5=(0,1,0,-1), v6=(0,0,1,-1)
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose that A is a (3 × 4) matrix with the following properties: Av1 = 0, A(v1 + 2v4) = 0, Av2 =[ 1 1 1 ] T , Av3 = [ 0 −1 −4 ]T . Find a basis for N (A), and a basis for R(A). Fully justify your answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT