Question

Two adjacent natural frequencies of an organ pipe are determined to be 780 Hz and 884...

Two adjacent natural frequencies of an organ pipe are determined to be 780 Hz and 884 Hz. (Assume the speed of sound is 343 m/s.)

(a) Calculate the fundamental frequency of this pipe.
Hz

(b) Calculate the length of this pipe.
m

Homework Answers

Answer #1

(A) For an open pipe the fundamental frequency Fo = V/2L where L is the length of pipe and v is velocity of sound in air. The overtones are thus 2Fo, 3Fo,4Fo etc.

For a closed pipe the fundamental frequency Fo =V/4L and the overtones are 3Fo, 5Fo,7Fo, etc.

If the pipe is open the nth harmonic would be

nFo = 780

and the next harmonic would be

(n+1)Fo =884

subtract these and Fo = 104, but with Fo it is not possible to have frequencies given so it must be a closed pipe.

i.e nFo = 780 and (n+2) =884

i.e 2Fo = 104 or Fo = 52 Hz

(B) so 52 = 343/4L i.e L = 343/(52*4) = 1.65 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stretched string can oscillate in resonance at 1280. Hz and at 1536 Hz. There are...
A stretched string can oscillate in resonance at 1280. Hz and at 1536 Hz. There are no resonance frequencies between the frequencies. a. what is the fundamental resonance frequency of the string? b. what is the length of an organ pipe, open at both ends, that has the same fundamental frequency as the string? (Assume that the velocity of the sound in air is 343.0 m/s) c. Would the organ pipe of part (b) also be capable of resonance at...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is the fundamental frequency of this organ pipe if the temperature drops to 1.20°C? (Hz) The fundamental frequency of an organ pipe, open at both ends, is 278.9 Hz. b) What is the fundamental frequency of this organ pipe if the temperature drops to 1.00°C?
What is the beat frequency heard when two organ pipes, each open at both ends, are...
What is the beat frequency heard when two organ pipes, each open at both ends, are sounded together at their fundamental frequencies if one pipe is 52 cm long and the other is 62 cm long?(The speed of sound is 340 m/s). Answer in Hz
A closed organ pipe has a fundamental frequency of 100 Hz. The first overtone of an...
A closed organ pipe has a fundamental frequency of 100 Hz. The first overtone of an open organ pipe has the same frequency as the first overtone of the closed pipe. What is the length of each pipe?
An organ pipe is 5.90 m long and is closed at one end. (The speed of...
An organ pipe is 5.90 m long and is closed at one end. (The speed of sound at T = 20.0°C is v = 343 m/s.) What is the second lowest standing wave frequency for the organ pipe? What is the third lowest standing wave frequency for the organ pipe? What is the fourth lowest standing wave frequency for the organ pipe? The sound level 23.2 m from a loudspeaker is 63.4 dB. What is the rate at which sound...
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s....
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s. A. What are the fundamental and first three audible overtones if the pipe is closed at one end? B. What are the fundamental and first three audible overtones if the pipe is open at both ends?
A. What length should an oboe have to produce a fundamental frequency of 244 Hz on...
A. What length should an oboe have to produce a fundamental frequency of 244 Hz on a day when the speed of sound is 343 m/s? It is open at both ends. B. What frequency is received by a person watching an oncoming ambulance moving at 119 km/h and emitting a steady 706 Hz sound from its siren? The speed of sound on this day is 333 m/s. C. What energy in millijoules falls on a 0.808 cm diameter eardrum...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
What is the length of an open-pipe resonator with a fundamental frequency of 400.0Hz 400.0 Hz...
What is the length of an open-pipe resonator with a fundamental frequency of 400.0Hz 400.0 Hz ? (Assume the speed of sound is 331m/s 331 m/s .) flute is an open-pipe resonator that can produce a wavelength that is twice as long as itself. A clarinet is a closed-pipe resonator. What is the longest wavelength that a clarinet can produce? Why do the same notes sound different on different musical instruments? What is the possible number of nodes and antinodes...
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s....
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s. Part A What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. Part B What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT