Question

A musician measures the frequencies of the audible standing waves in an organ pipe. He finds...

A musician measures the frequencies of the audible standing waves in an organ pipe. He finds two adjacent tones at 245 and 315 Hz. (a) On the basis of this discovery, the musician computes the pipe's fundamental frequency. What is its value (in Hz)? Hz (b) Is the pipe open at both ends or only one? open at both ends open at only one end (c) The air within the pipe has a temperature of 20°C and is at atmospheric pressure. How long (in m) is the pipe? m

Homework Answers

Answer #1

---------------------------------------------------------------------------------------------------------------------------

In case of doubts, please do comment below. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s. a. What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. b. What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas. 2.A particular organ pipe can resonate at 252...
Two adjacent natural frequencies of an organ pipe are determined to be 780 Hz and 884...
Two adjacent natural frequencies of an organ pipe are determined to be 780 Hz and 884 Hz. (Assume the speed of sound is 343 m/s.) (a) Calculate the fundamental frequency of this pipe. Hz (b) Calculate the length of this pipe. m
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is the fundamental frequency of this organ pipe if the temperature drops to 1.20°C? (Hz) The fundamental frequency of an organ pipe, open at both ends, is 278.9 Hz. b) What is the fundamental frequency of this organ pipe if the temperature drops to 1.00°C?
The shortest pipe in a particular organ is 1.37 m. (a) Determine the frequency (in Hz)...
The shortest pipe in a particular organ is 1.37 m. (a) Determine the frequency (in Hz) of the seventh harmonic (at 0°C) if the pipe is closed at one end. Hz (b) Determine the frequency (in Hz) of the seventh harmonic (at 0°C) if the pipe is open at both ends. (c) Determine these frequencies (in Hz) at 20.0°C. pipe frequency (Hz) closed open
An organ pipe is 114 cm long. What is the third audible harmonic if the pipe...
An organ pipe is 114 cm long. What is the third audible harmonic if the pipe is open at both ends? The speed of sound in air is 337 m/s.
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
An organ pipe is 134cm long and operates at room temperature. What are the frequencies of...
An organ pipe is 134cm long and operates at room temperature. What are the frequencies of the fundamental (n=1) and the next harmonic (n=2) if both ends of the pipe are open? What are the frequencies of the fundamental (n=1) and the next harmonic (n=3) if one end of the pipe is closed?
An organ pipe open at both ends is to be designed so that the fundamental frequency...
An organ pipe open at both ends is to be designed so that the fundamental frequency it plays is 220 Hz. a. What length of pipe is needed? b. If one end of the pipe is stopped up, what other note (frequency) can this same pipe play? c. Draw the fundamental frequency for the pipe open at both ends and when it is closed at one end. d. Calculate and draw the next higher harmonic when one end of the...
7). An organ pipe, closed at one end, is vibrating in its first overtone (second harmonic),...
7). An organ pipe, closed at one end, is vibrating in its first overtone (second harmonic), has length 61cm. A second organ pipe, open at both ends, is vibrating in its fundamental mode (first harmonic), has length 41cm. What are the frequencies of the tones from each?
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s....
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s. A. What are the fundamental and first three audible overtones if the pipe is closed at one end? B. What are the fundamental and first three audible overtones if the pipe is open at both ends?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT