Question

1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....

1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s.

a.

What are the fundamental and first three audible overtones if the pipe is closed at one end?

Express your answers using three significant figures separated by commas.

b.

What are the fundamental and first three audible overtones if the pipe is open at both ends?

Express your answers using three significant figures separated by commas.

2.A particular organ pipe can resonate at 252 Hz , 420 Hz , and 588 Hz , but not at any other frequencies in between.

a. Is it an open or a closed pipe?

b. What is the fundamental frequency of this pipe?

3. A uniform narrow tube 1.80 m long is open at both ends. It resonates at two successive harmonics of frequencies 295 Hz and 354 Hz .

a.

What is the fundamental frequency?

Express your answer to two significant figures and include the appropriate units.

b.

What is the speed of sound in the gas in the tube?

Express your answer to two significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s....
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s. Part A What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. Part B What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas.
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s....
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s. A. What are the fundamental and first three audible overtones if the pipe is closed at one end? B. What are the fundamental and first three audible overtones if the pipe is open at both ends?
Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0...
Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0 cm long, if the pipe is open at both ends. Please enter your answer as four numbers, separated with commas. ffund,fov1,fov2,fov3 =   Hz   Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0 cm long, if the pipe is closed at one end. Please enter your answer as four numbers, separated with commas. ffund,fov1,fov2,fov3 = Hz If the...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
#1 If the fundamental frequency of an 76 cm long guitar string is 460 Hz, what...
#1 If the fundamental frequency of an 76 cm long guitar string is 460 Hz, what is the speed of the traveling waves? #2: You have an organ pipe that resonates at frequencies of 800, 1120, and 1440 Hz but nothing between these. It may resonate at lower and higher frequencies as well. What is the fundamental frequency for this pipe?
An organ pipe is 1.2 m long. What are the fundamental and first two overtones is...
An organ pipe is 1.2 m long. What are the fundamental and first two overtones is the pipe is (a) closed at one end. (b) open at both ends?
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is the fundamental frequency of this organ pipe if the temperature drops to 1.20°C? (Hz) The fundamental frequency of an organ pipe, open at both ends, is 278.9 Hz. b) What is the fundamental frequency of this organ pipe if the temperature drops to 1.00°C?
The shortest pipe in a particular organ is 1.37 m. (a) Determine the frequency (in Hz)...
The shortest pipe in a particular organ is 1.37 m. (a) Determine the frequency (in Hz) of the seventh harmonic (at 0°C) if the pipe is closed at one end. Hz (b) Determine the frequency (in Hz) of the seventh harmonic (at 0°C) if the pipe is open at both ends. (c) Determine these frequencies (in Hz) at 20.0°C. pipe frequency (Hz) closed open
A musician measures the frequencies of the audible standing waves in an organ pipe. He finds...
A musician measures the frequencies of the audible standing waves in an organ pipe. He finds two adjacent tones at 245 and 315 Hz. (a) On the basis of this discovery, the musician computes the pipe's fundamental frequency. What is its value (in Hz)? Hz (b) Is the pipe open at both ends or only one? open at both ends open at only one end (c) The air within the pipe has a temperature of 20°C and is at atmospheric...
You have two air columns that are each 2.470 m long. One column is open at...
You have two air columns that are each 2.470 m long. One column is open at both ends and the other is closed at one end. You wish to determine the frequencies you can produce in the audible range (20 Hz–20,000 Hz) on a day when the temperature of the air is at 24.00°C. (Give your answers to at least four significant figures. Assume that the speed of sound at 0° C is exactly 331 m/s.) (a) in the column...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT