Question

What is the beat frequency heard when two organ pipes, each open at both ends, are...

What is the beat frequency heard when two organ pipes, each open at both ends, are sounded together at their fundamental frequencies if one pipe is 52 cm long and the other is 62 cm long?(The speed of sound is 340 m/s). Answer in Hz

Homework Answers

Answer #1

the speed of sound v=340m/s

the length of the open organ pipe =52cm=0.52m and =62cm=0.62m

the length in open pipe l=  then wave length

the fundamental frequency of the open organ pipe

if the fundamental frequencies of the both organ pipe and

the beat frequency

  

  

  

an average human ear can not distinguish the variations if it is more than 16 beats per sec (16Hz).so, the frequency of beats 52.7Hz is difficult to distnguish.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two 5.0 m long pipes are both producing tones and as they sound simultaneously, a beat...
Two 5.0 m long pipes are both producing tones and as they sound simultaneously, a beat frequency of 17.15 Hz is heard. One pipe is open at both ends and is producing its third resonant frequency, and the other pipe is closed at one end and producing a lower frequency than the one that is open at both ends. Which resonant frequency is the closed-at-one-end pipe producing? Please help me with the picture representation as well.
An organ pipe open at both ends is to be designed so that the fundamental frequency...
An organ pipe open at both ends is to be designed so that the fundamental frequency it plays is 220 Hz. a. What length of pipe is needed? b. If one end of the pipe is stopped up, what other note (frequency) can this same pipe play? c. Draw the fundamental frequency for the pipe open at both ends and when it is closed at one end. d. Calculate and draw the next higher harmonic when one end of the...
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s. a. What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. b. What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas. 2.A particular organ pipe can resonate at 252...
Two identical pipes, each closed at one end, have a fundamental frequency of 349 Hz at...
Two identical pipes, each closed at one end, have a fundamental frequency of 349 Hz at 20.0°C. A) What is the length of the pipes? B) If the air temperature is increased to 25.0°C in one pipe what is the new fundamental frequency in this pipe? C) If the two pipes are now sounded together, what beat frequency results?
two identical, open ended organ pipes are placed 5.47 m apart on opposite corners of an...
two identical, open ended organ pipes are placed 5.47 m apart on opposite corners of an outdoor stage. both pipes play the same musical note at 325 hz. how many destructive minima occur along the straight line from one pipe to the other? Use 344 m/s for the speed of sound.
A stretched string can oscillate in resonance at 1280. Hz and at 1536 Hz. There are...
A stretched string can oscillate in resonance at 1280. Hz and at 1536 Hz. There are no resonance frequencies between the frequencies. a. what is the fundamental resonance frequency of the string? b. what is the length of an organ pipe, open at both ends, that has the same fundamental frequency as the string? (Assume that the velocity of the sound in air is 343.0 m/s) c. Would the organ pipe of part (b) also be capable of resonance at...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is the fundamental frequency of this organ pipe if the temperature drops to 1.20°C? (Hz) The fundamental frequency of an organ pipe, open at both ends, is 278.9 Hz. b) What is the fundamental frequency of this organ pipe if the temperature drops to 1.00°C?
Two adjacent natural frequencies of an organ pipe are determined to be 780 Hz and 884...
Two adjacent natural frequencies of an organ pipe are determined to be 780 Hz and 884 Hz. (Assume the speed of sound is 343 m/s.) (a) Calculate the fundamental frequency of this pipe. Hz (b) Calculate the length of this pipe. m
Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0...
Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0 cm long, if the pipe is open at both ends. Please enter your answer as four numbers, separated with commas. ffund,fov1,fov2,fov3 =   Hz   Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0 cm long, if the pipe is closed at one end. Please enter your answer as four numbers, separated with commas. ffund,fov1,fov2,fov3 = Hz If the...
An open organ pipe is 1.8m long. If the speed of sound is 343m/s, what are...
An open organ pipe is 1.8m long. If the speed of sound is 343m/s, what are the pipes:           a) fundamental , b) 1st overtone , & c) 2nd overtone ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT