Question

A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign...

A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the bullet. the mass of the first block is 1150g and it's velocity is +0.550 m/s after the bullet passes through it. The mass of the second block is 1530g.

(a) what is the velocity of the second block after the bullet embeds itself?
(b) Find the ratio of the total kinetic energy after the collisions to that before the collisions.

Homework Answers

Answer #1

Mass of bullet

Initial velocity of bullet

Mass of the first block , Mass of second bullet

Velocity of first block

a)

Conserving the moentum of the system before and after collision of bullet with the blocks,

b)

Kinetic energy of the system before collision

Kinetic energy of the system after collision

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates...
A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the bullet....
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign +...
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign +...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s...
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s embeds itself in a wooden block with mass mb= 0.99 kg moving in the same direction with an initial speed vb= 2.6 m/s. What is the speed of the bullet-embedded block after the collision? What is the total kinetic energy of the bullet and block system before and after the collision?
A 15.00g bullet is moving horizontally at 250.0m/s. It impacts and passes completely through a block...
A 15.00g bullet is moving horizontally at 250.0m/s. It impacts and passes completely through a block of wood. After passing through the wood, the bullet emerges at a speed of only 110.0m/s. if the block of wood has mass of 125.0g, what is the speed of the block immediately after the bullet passes through it?
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.500 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...
A bullet (m = 0.04kg) with a velocity of 285m/s hits a block (M = 2.3kg)...
A bullet (m = 0.04kg) with a velocity of 285m/s hits a block (M = 2.3kg) that is initially at rest.  The bullet passes through the block and emerges with a velocity of 85m/s.   (a) What is the velocity of the block after the bullet leaves it? (b) What is the total kinetic energy of this system before the collision? (c) What is the total kinetic energy of this system after the collision?
A bullet of mass 10.0 gram moving at a velocity of 336 m/s toward the right...
A bullet of mass 10.0 gram moving at a velocity of 336 m/s toward the right strikes an orange of mass 90.0 gram. The bullet passes through the orange and in the process pulls out 10.0 grams of orange innards. Assuming that this collision is elastic (i.e., that no kinetic energy is lost), what is the velocity of the rest of the remaining 80 grams of orange? Take rightward motion to be positive and leftward motion to be negative. Hint:...