Question

A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates...

A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the bullet. The mass of the first block is 1150 g, and its velocity is after the bullet passes through it. The mass of the second block is 1530 g.

(a) What is the velocity of the second block after the bullet embeds itself?

(b) Find the ratio of the total kinetic energy after the collisions to that before the collisions.

Homework Answers

Answer #1


apply law of conservation of momentum

momentum before collision = momentum after collision wi the first block

4*355 = 1150*v1

v1 = 4.355/1150 = 1.24 m/s

again after embedding with second block

1150*1.24 = (1150+1530)*V

V = 1150*1.24/(1150+1530) = 0.53 m/s..............is teh answer for A)

----------------------------------------------------

B) here in the question it was not clearly mention that to whom we need to calculte the required ratio

here i am finding the ratio of KE of the bullet

KE after the collision KEf = 0.5*4*10^-3*0.53^2 = 0.0005618 J


KE before the collisions is KEi = 0.5*4*10^-3*355^2 = 252.05 J

So KEf/KEi = 0.0005618/252.05 = 2.23

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign...
A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign +...
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign +...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A 15.00g bullet is moving horizontally at 250.0m/s. It impacts and passes completely through a block...
A 15.00g bullet is moving horizontally at 250.0m/s. It impacts and passes completely through a block of wood. After passing through the wood, the bullet emerges at a speed of only 110.0m/s. if the block of wood has mass of 125.0g, what is the speed of the block immediately after the bullet passes through it?
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s...
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s embeds itself in a wooden block with mass mb= 0.99 kg moving in the same direction with an initial speed vb= 2.6 m/s. What is the speed of the bullet-embedded block after the collision? What is the total kinetic energy of the bullet and block system before and after the collision?
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.500 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into...
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into and passes through a block of mass 5 kg, as shown in the figure. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring of force constant 538 N/m. If the block moves a distance 1.3 cm to the right after the bullet passed through it, find the speed v at which the bullet emerges from the block and...
A 50 g bullet moving horizontally strikes a stationary 3 kg mass resting on a smooth...
A 50 g bullet moving horizontally strikes a stationary 3 kg mass resting on a smooth horizontal surface. The 3 kg is attached to a spring and the other end of the spring is attached to a vertical wall. if the masses remain stuck after the collision and undergo a maximum compression of 7 cm, find the velocity of the bullet. Assume spring constant is 100 N/m
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT