Question

A small sports car and a pickup truck start coasting down a 12 m hill together,...

A small sports car and a pickup truck start coasting down a 12 m hill together, side by side. The mass of the sports car is 640 kg and the mass of the pickup truck is 1280 kg (twice the mass of the sports car). Assuming no friction or air resistance, what is the kinetic energy of each vehicle at the bottom of the hill? Give your answers in joules. HINT: How does the kinetic energy of a vehicle at the bottom of the hill compare to the potential energy of the vehicle at the top of the hill? Use your answer to this hint to guide your strategy. (a) What is the kinetic energy of the sports car? J (b) What is the kinetic energy of the pickup truck? J What is the speed of each vehicle at the bottom of the hill? Give your answers in m/s. (c) What is the speed of the sports car? m/s (d) What is the speed of the pickup truck? m/s

Homework Answers

Answer #1

(a)

apply conservation of energy

kinectic energy of sports car = potetntial energy of sports car

= (640) (9.8) (12)

=75264 J

kinectic energy of pickup truck = potetntial energy of pickup truck

= (1280) (9.8) (12)

=150528 J

speed of sprots car is

kinectic energy of sports car = 1/2 mv^2

v= sqrt 2(kinectic energy of sports car)/m

= sqrt 2 ( 75264 J)/640

=15.33 m/s

kinectic energy of pickup truck = 1/2 Mv^2

v= sqrt 2(kinectic energy of pickup truck)/M

= sqrt 2 ( 150528 J)/1280

=15.33 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 6.76 kg bowling ball is moving down a frictionless and bumpy hill. Its initial speed...
A 6.76 kg bowling ball is moving down a frictionless and bumpy hill. Its initial speed is 1.48 m/s. 1) What is the magnitude of its initial momentum? (in units of kg m/s). True or false 2) As the above ball frictionlessly moves down the hill, its potential energy and kinetic energy increase. 3) Its initial kinetic energy is: A) 6.76 J, B) 7.40 J, C) 20.0 J, D) 66.2 J, or E) none of these 4) The initial elevation...
Q. A 32,000 kg freight car is coasting at 0.550 m/s with negligible friction under a...
Q. A 32,000 kg freight car is coasting at 0.550 m/s with negligible friction under a hopper that dumps 140,000 kg of scrap metal into it. A. What is the final velocity (in m/s) of the loaded freight car? (Enter the magnitude.) B. How much kinetic energy (in J) is lost?
EXAMPLE 6.4A Truck Versus a Compact GOAL Apply conservation of momentum to a one-dimensional inelastic collision....
EXAMPLE 6.4A Truck Versus a Compact GOAL Apply conservation of momentum to a one-dimensional inelastic collision. PROBLEM A pickup truck with mass 1.80 103 kg is traveling eastbound at +15.0 m/s, while a compact car with mass 9.00 102 kg is traveling westbound at −15.0 m/s. (See figure.) The vehicles collide head-on, becoming entangled. (a)   Find the speed of the entangled vehicles after the collision.   (b)   Find the change in the velocity of each vehicle.   (c)   Find the change in...
A 1250 kg car drives up a hill that is 15.2 m high. During the drive,...
A 1250 kg car drives up a hill that is 15.2 m high. During the drive, two nonconservative forces do work on the car: (i) the force of friction, and (ii) the force generated by the car's engine. The work done by friction is −2.91×105 J ; the work done by the engine is 6.44×105 J . Part A Find the change in the car's kinetic energy from the bottom of the hill to the top of the hill.
A car with snow tyres (m=1500 kg) is sliding down an icy hill with a slope...
A car with snow tyres (m=1500 kg) is sliding down an icy hill with a slope of 15º at an initial speed of 8 m/s.) The coefficient of kinetic friction is 0.4. a. What is the stopping distance b.After sliding 12 m what is the momentum of the car? c. At this point of having travelled 12m the car collides into another car (m=1000 kg) travelling 3 m/s in the same direction down the slope and they are stuck together....
1. Which has the greater kinetic energy, a heavy truck at rest or a moving roller...
1. Which has the greater kinetic energy, a heavy truck at rest or a moving roller skate? a. none of above b. heavy truck at rest c. the roller skate at rest d. The kinetic energies are equal. 2. If a sports car with a mass of 2000 kg travels down the road with a speed of 10 m/s, its kinetic energy is _______________ kg (m/s)2 a. 80000 b. 16000 c. 8000 d. 100000 e.none of above 3. A sports...
A truck with total mass 3000 kg uses a 320 kg flywheel to store energy. Model...
A truck with total mass 3000 kg uses a 320 kg flywheel to store energy. Model the flywheel as a disk with radius 0.75 m. Assume that 90% of the kinetic energy stored in the flywheel can be converted into linear kinetic energy. What should the angular velocity of the flywheel be to take the truck from 0 to 15 m/s? Using the stored energy in the flywheel, how high a hill can the truck climb and still have a...
A cyclist is coasting at 13 m/s when she starts down a 420 m long slope...
A cyclist is coasting at 13 m/s when she starts down a 420 m long slope that is 30 m high. The cyclist and her bicycle have a combined mass of 70 kg. A steady 11 N drag force due to air resistance acts on her as she coasts all the way to the bottom. What is her speed at the bottom of the slope? Express your answer with the appropriate units.
A 1 150.0 kg car traveling initially with a speed of 25.000 m/s in an easterly...
A 1 150.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 8 000.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is 18.000 m/s to the east. (a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.) m/s east (b) What is the change in mechanical energy of...
The 2040 kg cable car shown in the figure descends a 200-m-high hill. In addition to...
The 2040 kg cable car shown in the figure descends a 200-m-high hill. In addition to its brakes, the cable car controls its speed by pulling an 1860 kg counterweight up the other side of the hill. The rolling friction of both the cable car and the counterweight are negligible. Part A: How much braking force does the cable car need to descend at constant speed? Part B: One day the brakes fail just as the cable car leaves the...