Question

A truck with total mass 3000 kg uses a 320 kg flywheel to store energy. Model...

A truck with total mass 3000 kg uses a 320 kg flywheel to store energy. Model the flywheel as a disk with radius 0.75 m. Assume that 90% of the kinetic energy stored in the flywheel can be converted into linear kinetic energy.

  1. What should the angular velocity of the flywheel be to take the truck from 0 to 15 m/s?
  2. Using the stored energy in the flywheel, how high a hill can the truck climb and still have a speed of 1.5 m/s at the top of the hill?

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bus contains a 2,353 kg flywheel (a disk that has a 1.9 m radius) and...
A bus contains a 2,353 kg flywheel (a disk that has a 1.9 m radius) and has a total mass of 10,641 kg. Assume 90.0% of the rotational kinetic energy of the flywheel can be transformed into translational energy of the bus. what is the angular velocity in unit of round per minute the flywheel must have to contain enough energy to take the bus from rest to climb a hill of height 16.7 meters and still have a speed...
A futuristic design for a car is to have a large solid disk-shaped flywheel within the...
A futuristic design for a car is to have a large solid disk-shaped flywheel within the car storing kinetic energy. The uniform flywheel has mass 370 kg with a radius of 0.500 m and can rotate up to 140 rev/s. Assuming all of this stored kinetic energy could be transferred to the linear velocity of the 1600-kg car, find the maximum attainable speed of the car.
Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting...
Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the flywheel up to its top speed of 611 rad/s. One such flywheel is a solid, uniform cylinder with a mass of 551 kg and a radius of 1.1 m that rotates about its central axis. What is the kinetic energy of the flywheel after charging? If the truck uses an average power of 6.5 kW, for how many minutes can it operate between...
3. A flywheel comprises a uniform circular disk with a mass of 112.0 kg and a...
3. A flywheel comprises a uniform circular disk with a mass of 112.0 kg and a radius of 1.3 m. It rotates with an angular velocity of 1213 rev/min. A constant tangential force is applied at a radial distance of 0.8 m. What is the initial kinetic energy of the wheel? 4. If the wheel is brought to rest in 111.0 s, what is the tangential force? 5. How many revolutions does the flywheel make while it is stopping in...
One way to store energy is in the rotational motion of a flywheel, and some have...
One way to store energy is in the rotational motion of a flywheel, and some have proposed using such technology to power automobiles. One unit is based on a 5.0-kg flywheel in the shape of a hoop of radius 0.14 m that spins as fast as 60000 rpm. a. How much kinetic energy is stored by the flywheel when it is rotating at its maximum rate? b. If the vehicle requires an average power of 12 kW under normal driving...
One way to store energy is in the rotational motion of a flywheel, and some have...
One way to store energy is in the rotational motion of a flywheel, and some have proposed using such technology to power automobiles. One unit is based on a 5.5-kg flywheel in the shape of a hoop of radius 5.0×10−2 m that spins as fast as 60000 rpm. A.How much kinetic energy is stored by the flywheel when it is rotating at its maximum rate? Express your answer to two significant figures and include appropriate units. B.If the vehicle requires...
A car is designed to get its energy from a rotating flywheel in the shape of...
A car is designed to get its energy from a rotating flywheel in the shape of a uniform, solid disk of radius 0.550 m and mass 560 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel's rotational speed up to 5.10 ✕ 103 rev/min. a)Find the kinetic energy stored in the flywheel (in J). b)If the flywheel is to supply energy to the car as a 12.0 hp motor would, find the length...
From this week's lab you learned that the change in gravitational potential energy of a falling...
From this week's lab you learned that the change in gravitational potential energy of a falling body can be captured and stored as a rotational kinetic energy of a spinning disk. This gave you the idea of a regenerative driver for an elevator in a tall building. When an elevator goes down the corresponding change in the gravitational potential energy of the elevator is transformed into the rotational kinetic energy of a solid disk-shape flywheel which can be extracted and...
A flywheel within large water pump is a solid disk with mass 23.5 kg and a...
A flywheel within large water pump is a solid disk with mass 23.5 kg and a radius of 0.36 m. Starting from rest it begins to rotate with a constant acceleration of 2.5 rad/sec2 for 5.9 sec after which it rotates at a constant rate. 1) What is the moment of interia of the flywheel? kg-m2 Submit 2) After 5.9 seconds, what is it's angular speed? rad/sec Submit 3) Though what angle has it rotated in those 5.9 seconds? rad...
A flywheel within large water pump is a solid disk with mass 21 kg and a...
A flywheel within large water pump is a solid disk with mass 21 kg and a radius of 0.45 m. Starting from rest it begins to rotate with a constant acceleration of 2.4 rad/sec2 for 5.1 sec after which it rotates at a constant rate. 1) What is the moment of interia of the flywheel? 2) After 5.1 seconds, what is it's angular speed? 3) Though what angle has it rotated in those 5.1 seconds? 4) How many revolutions has...