Question

A series LCR circuit with L=25 mH, C = 12 µF, and R = 50 Ω...

A series LCR circuit with L=25 mH, C = 12 µF, and R = 50 Ω is driven by a generator with a maximum emf of 25 V.

a) What is the resonance frequency?

b) What is the current at resonance?

c) What are the reactances χC and χL at double the resonance frequency?

d) Draw the voltage phasor diagram at double the resonance frequency?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is...
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is connected to an alternative voltage of V rms = 12 V and frequency of 60 Hz. Find the following quantities in questions a thorough I. You are required to show the formula with the correct symbols - substitute- calculate- answer and the unit for each question. HINT: The first one has been done as an example of how you need to do the problem...
An RLC circuit with R = 24.6 ?, L = 325 mH, and C = 40.8...
An RLC circuit with R = 24.6 ?, L = 325 mH, and C = 40.8 µF is connected to an ac generator with an rms voltage of 24 V. Determine the average power delivered to this circuit when the frequency of the generator is each of the following. (a) equal to the resonance frequency W (b) twice the resonance frequency W (c) half the resonance frequency W
5)A series circuit consisted of R= 4.7?, L= 2.0 mH , 2200 µF is connected to...
5)A series circuit consisted of R= 4.7?, L= 2.0 mH , 2200 µF is connected to an alternative voltage with maximum voltage of Vm = 12.0 V and frequency of 60.0 Hz. Find the following- show the formula- substitute- calculate – put final result in a box with its unit, a ) Inductive Reactance b)Capacitive Reactance c) Impedance d)maximum current in the circuit e) Voltage across the resister f)Voltage across the inductor. g)Voltage across the capacitor h) RMS voltage across...
An inductor (L = 400 mH), a capacitor (C = 4.43 µF), and a resistor (R...
An inductor (L = 400 mH), a capacitor (C = 4.43 µF), and a resistor (R = 500 Ω) are connected in series. A 46.0-Hz AC generator connected in series to these elements produces a maximum current of 335 mA in the circuit. a.) Calculate the required maximum voltage ΔVmax. b.) Determine the phase angle by which the current leads or lags the applied voltage. The current ______ the voltage by a magnitude of ______.
4. A series RLC circuit with R = 510ohma, L = 25 mH and C =...
4. A series RLC circuit with R = 510ohma, L = 25 mH and C = 240 nF, is connected to an alternating current source with Em = 17 V and ω = 6.3 krad / s. Calculate a) the phase difference between Em and I. b) what is the average ratio at which energy is dissipated ?. One second Capacitor with the same capacitance is connected in series with the other components. Determine the value of c) Xc, Z,...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C = 22 μF, is attached to a 120-V (rms) AC power supply with frequency 60 Hz. (a) What is the impedance of the circuit? (b) What is the peak current in the circuit? (c) What is the peak voltage across the resistor? (d) What is the peak voltage across the inductor? (e) What is the peak voltage across the capacitor? (f) What is the...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown)...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown) has an AC generator with frequency f = 310 Hz and amplitude Emax = 120 V. The peak instantaneous current in the circuit is Imax = 1.4 A. What is φ = the phase angle between the driving EMF and the current in the circuit? Define φ to be positive if the voltage leads the current and φ to be negative if the current...
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant...
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant shown in the phasor diagram,  ω t = π 3. If the voltage amplitude across the resistor is VR = 16.00 V, and the voltage amplitude across the inductor is also VL = 16.00 V, then what is the instantaneous voltage across the inductor at the instant shown in the phasor diagram?
An LRC series circuit with R = 120 Ω , L = 40 mH , and...
An LRC series circuit with R = 120 Ω , L = 40 mH , and C = 1.5 μF is powered by an ac voltage source of peak voltage V0 = 230 V and frequency f = 440 Hz. Determine the peak voltage across L. Determine the phase angle of the voltage across L relative to the source voltage Determine the peak voltage across C. Determine the phase angle of the voltage across C relative to the source voltage.
In a series L-R-C circuit connected to an alternating current generator whose maximum voltage is 205...
In a series L-R-C circuit connected to an alternating current generator whose maximum voltage is 205 V, the resistance is 51.0 Ω and the capacitance is 6.22 μF . The inductance L can be varied from 2.0 mH to 40.0 mH by adjusting an iron core in the solenoid of the inductor. The angular frequency ω of the generator is 3550 rad/s. If the capacitor voltage is not to exceed 145 V, find the maximum and minimum inductance, Lmax and...