Question

An LRC series circuit with R = 120 Ω , L = 40 mH , and...

An LRC series circuit with R = 120 Ω , L = 40 mH , and C = 1.5 μF is powered by an ac voltage source of peak voltage V0 = 230 V and frequency f = 440 Hz.

Determine the peak voltage across L.

Determine the phase angle of the voltage across L relative to the source voltage

Determine the peak voltage across C.

Determine the phase angle of the voltage across C relative to the source voltage.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C = 22 μF, is attached to a 120-V (rms) AC power supply with frequency 60 Hz. (a) What is the impedance of the circuit? (b) What is the peak current in the circuit? (c) What is the peak voltage across the resistor? (d) What is the peak voltage across the inductor? (e) What is the peak voltage across the capacitor? (f) What is the...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown)...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown) has an AC generator with frequency f = 310 Hz and amplitude Emax = 120 V. The peak instantaneous current in the circuit is Imax = 1.4 A. What is φ = the phase angle between the driving EMF and the current in the circuit? Define φ to be positive if the voltage leads the current and φ to be negative if the current...
In an LRC series circuit, the inductance is 244 mH, the resistance is 29 Ω, and...
In an LRC series circuit, the inductance is 244 mH, the resistance is 29 Ω, and the capacitance is 354 μF. If the AC voltage applied across the circuit is given by V(t) = (12 V)sin(11πt) calculate the voltage across each element at a time of t = 0.04 s. VR = V VC = V VL = V
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is...
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is connected to an alternative voltage of V rms = 12 V and frequency of 60 Hz. Find the following quantities in questions a thorough I. You are required to show the formula with the correct symbols - substitute- calculate- answer and the unit for each question. HINT: The first one has been done as an example of how you need to do the problem...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
An L-R-C series circuit L = 0.120 H , R = 238 Ω , and C...
An L-R-C series circuit L = 0.120 H , R = 238 Ω , and C = 7.32 μF carries an rms current of 0.449 A with a frequency of 394 Hz . Part A What is the phase angle? .793 radians Part B What is the power factor for this circuit? Part C What is the impedance of the circuit? Part D What is the rms voltage of the source?
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
In an LRC series circuit, the components have the following Values: L=0.4 H, C=600 μF, R=200...
In an LRC series circuit, the components have the following Values: L=0.4 H, C=600 μF, R=200 Ω, V=30 V and frequency 1.5 kHz. Calculate the impedance of the circuit Calculate the maximum voltage across the resistor, the inductor and the capacitor
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT