Question

An RLC circuit with R = 24.6 ?, L = 325 mH, and C = 40.8...

An RLC circuit with R = 24.6 ?, L = 325 mH, and C = 40.8 µF is connected to an ac generator with an rms voltage of 24 V. Determine the average power delivered to this circuit when the frequency of the generator is each of the following. (a) equal to the resonance frequency W (b) twice the resonance frequency W (c) half the resonance frequency W

Homework Answers

Answer #1

Solution-

A) at resonance frequency,

XL = XC

Z = R

Irms = 24 / Z = 24 / 24.6=0.976 A


P = Irms^2 R =23.43 W

(B) w0 = 1 / sqrt(LC) = 1 / sqrt(0.325 x 40.8 x 10^-6)

= 274.62 rad/s

w = 2w0 = 549.23 rad/s

XL = w L = 178.49 ohm

Xc = 1 / wC = 44.62 ohm

Z = sqrt[ R^2 + (XL - XC)^2] = 136.11 ohm

Irms = 24 / 136.11 = 0.176 A


Pavh = 0.176^2 x 24.6 = 0.76 W

(C) w = w0 / 2 = 123.81 rad/s

XL = w L =40.24 ohm

Xc = 1 / wC = 197.96 ohm

Z = sqrt[ R^2 + (XL - XC)^2] = 159.63 ohm

Irms = 24 / 159.63 = 0.150 A


Pavh = 0.150^2 x 24.6 = 0.55 W

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown)...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown) has an AC generator with frequency f = 310 Hz and amplitude Emax = 120 V. The peak instantaneous current in the circuit is Imax = 1.4 A. What is φ = the phase angle between the driving EMF and the current in the circuit? Define φ to be positive if the voltage leads the current and φ to be negative if the current...
A series LCR circuit with L=25 mH, C = 12 µF, and R = 50 Ω...
A series LCR circuit with L=25 mH, C = 12 µF, and R = 50 Ω is driven by a generator with a maximum emf of 25 V. a) What is the resonance frequency? b) What is the current at resonance? c) What are the reactances χC and χL at double the resonance frequency? d) Draw the voltage phasor diagram at double the resonance frequency?
In an L-R-C series circuit, the resistance is 600 ?, the inductance is 440 mH and...
In an L-R-C series circuit, the resistance is 600 ?, the inductance is 440 mH and the capacitance is 4.00 ?F. At resonance, the rms current through the circuit is 0.120 A. (A) Find the resonance frequency f0 of the circuit. [4] (B) Find the rms voltage of the source. [4] (C) Find the rms voltage across the capacitor at resonance. [6] (D) Find the rms voltage across the inductor at resonance.
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF capacitor, and an AC voltage source of amplitude 45.0 V operating at an angular frequency of 360 rad/s. (a) What is the power factor of this circuit? (b) Find the average power delivered to the entire circuit by the source, in W (c) What is the average power delivered to the capacitor, in W?
In RLC series circuit, an AC source with a rms voltage of 220 V and frequency...
In RLC series circuit, an AC source with a rms voltage of 220 V and frequency 60 Hz is connected to a resistor, a capacitor 65 µF and an inductor of inductance 185 mH. If the observed current is 4.4 A, evaluate the resistance of the resistor.
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is...
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is connected to an alternative voltage of V rms = 12 V and frequency of 60 Hz. Find the following quantities in questions a thorough I. You are required to show the formula with the correct symbols - substitute- calculate- answer and the unit for each question. HINT: The first one has been done as an example of how you need to do the problem...
16. In an RLC circuit, a resistor R x 8 Ohm, a capacitor of 330 micro...
16. In an RLC circuit, a resistor R x 8 Ohm, a capacitor of 330 micro Faraday, and an inductance of 50 mH are connected in series. The circuit is connected to an alternating source that delivers a voltage equal to: V-250- without (314 t) (volts) Identify and calculate: a) The maximum voltage of the source. b) The frequency of the source. c) The RMS voltage of the source. d) Capacitive reactance. e) Inductive reactance. f) The impedance of the...
A sinusoidal voltage V= 80.0 V sin (150t) is applied to a series RLC circuit with...
A sinusoidal voltage V= 80.0 V sin (150t) is applied to a series RLC circuit with L =80.0 mH, C= 125.0 µF, and = 40.0 Ω Find RMS value of current. Potential difference (rms) between A to B, B to C and B to D Average and maximum power at resonance. Is current leading or lagging the voltage? Explain.
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C = 22 μF, is attached to a 120-V (rms) AC power supply with frequency 60 Hz. (a) What is the impedance of the circuit? (b) What is the peak current in the circuit? (c) What is the peak voltage across the resistor? (d) What is the peak voltage across the inductor? (e) What is the peak voltage across the capacitor? (f) What is the...