Question

4. A series RLC circuit with R = 510ohma, L = 25 mH and C =...

4. A series RLC circuit with R = 510ohma, L = 25 mH and C = 240 nF, is connected to an alternating current source with Em = 17 V and ω = 6.3 krad / s. Calculate a) the phase difference between Em and I. b) what is the average ratio at which energy is dissipated ?. One second Capacitor with the same capacitance is connected in series with the other components. Determine the value of c) Xc, Z, d) I increase, decrease or remain the same? f) draw the phasor diagram including Em, VR, VC and VL

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A series RLC circuit consists of a 59.0 Ω resistor, a 5.10 mH inductor, and a...
A series RLC circuit consists of a 59.0 Ω resistor, a 5.10 mH inductor, and a 310 nF capacitor. It is connected to an oscillator with a peak voltage of 5.10 V. Determine phase angle at frequency 3000 HzHz. I kept getting -38.2 degrees, which is wrong. Someone please help!! Thanks!
An RLC series circuit has a 210 Ω resistor and a 25.0 mH inductor. At 8300...
An RLC series circuit has a 210 Ω resistor and a 25.0 mH inductor. At 8300 Hz, the phase angle is 45.0°. Part a (the impedance) had an answer of 296.58 ohms, but I can't seem to figure out part b: Find the minimum possible capacitance (in nF) of the circuit.
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is...
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is connected to an alternative voltage of V rms = 12 V and frequency of 60 Hz. Find the following quantities in questions a thorough I. You are required to show the formula with the correct symbols - substitute- calculate- answer and the unit for each question. HINT: The first one has been done as an example of how you need to do the problem...
A series RLC circuit consists of a 40.0 Ω resistor, a 2.70 mH inductor, and a...
A series RLC circuit consists of a 40.0 Ω resistor, a 2.70 mH inductor, and a 410 nF capacitor. It is connected to a 3.0 kHz oscillator with a peak voltage of 6.00 V. A. What is the instantaneous emf when i =I? B. What is the instantaneous emf  when i =0 A and is decreasing? C. What is the instantaneous emf  when i =−I?
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
In an LRC series circuit, the inductance is 244 mH, the resistance is 29 Ω, and...
In an LRC series circuit, the inductance is 244 mH, the resistance is 29 Ω, and the capacitance is 354 μF. If the AC voltage applied across the circuit is given by V(t) = (12 V)sin(11πt) calculate the voltage across each element at a time of t = 0.04 s. VR = V VC = V VL = V
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 9.74 mH, and E = Emsinωdt with Em = 45.2 V and ωd = 2940 rad/s. For time t = 0.431 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
In a series oscillating RLC circuit, R = 15.5 Ω, C = 31.6 μF, L =...
In a series oscillating RLC circuit, R = 15.5 Ω, C = 31.6 μF, L = 9.32 mH, and E = Emsinωdt with Em = 44.6 V and ωd = 3070 rad/s. For time t = 0.432 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . a. Find the current amplitude across the inductor, the resistor, and the capacitor. b. Find the voltage amplitudes across the inductor, the resistor, and the capacitor. Enter your answers numerically separated by commas. (VL, VR, VC) e. Find new current amplitude across the inductor, the resistor, and...
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8...
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8 ?F. It is connected to an AC source with f = 60.0 Hz and ?Vmax = 150 V. Suppose the frequency is now increased to f = 93 Hz, and we want to keep the impedance unchanged. (a) What new resistance should we use to achieve this goal? R = ____ ? (b) What is the phase angle (in degrees) between the current and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT