Question

An LRC series circuit has with R = 105 Ω, L = 76 mH, and C...

An LRC series circuit has with R = 105 Ω, L = 76 mH, and C = 22 μF, is attached to a 120-V (rms) AC power supply with frequency 60 Hz.
(a) What is the impedance of the circuit?
(b) What is the peak current in the circuit?
(c) What is the peak voltage across the resistor?
(d) What is the peak voltage across the inductor?
(e) What is the peak voltage across the capacitor?
(f) What is the power dissipated by the circuit?
(g) What is the power factor for the circuit?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An LRC series circuit with R = 120 Ω , L = 40 mH , and...
An LRC series circuit with R = 120 Ω , L = 40 mH , and C = 1.5 μF is powered by an ac voltage source of peak voltage V0 = 230 V and frequency f = 440 Hz. Determine the peak voltage across L. Determine the phase angle of the voltage across L relative to the source voltage Determine the peak voltage across C. Determine the phase angle of the voltage across C relative to the source voltage.
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C...
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C = 7.32 μF carries an rms current of 0.445 A with a frequency of 401 Hz . a. What is the phase angle? b. What is the power factor for this circuit? c. What is the impedance of the circuit? d. What is the rms voltage of the source? e) What is the average rate at which electrical energy is converted to thermal energy...
Question 1: An L-R-C series circuit L = 0.117 H , R = 243 Ω ,...
Question 1: An L-R-C series circuit L = 0.117 H , R = 243 Ω , and C = 7.27 μF carries an rms current of 0.448 A with a frequency of 402 Hz . What is the phase angle, answer in (radians) What is the power factor of this circuit? What is the impedance of the circuit? What is the rms voltage of the source? What is the average rate at which electrical energy is converted to thermal energy...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C...
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C = 7.27 μF carries an rms current of 0.449 A with a frequency of 394 Hz. a.)What is the phase angle? b.)What is the power factor for this circuit? c.)What is the impedance of the circuit? d.)What is the rms voltage of the source? e.)What average power is delivered by the source? f.)What is the average rate at which electrical energy is dissipated (converted...
... » Power dissipated by an RLC circuit ... An AC voltage with an amplitude of...
... » Power dissipated by an RLC circuit ... An AC voltage with an amplitude of 120 V is applied to a series combination of a 243 μF capacitor, a 107 mH inductor, and a 21.1 Ω resistor. Calculate the power dissipated by the circuit at a frequency of 60.0 Hz. Calculate the power factor at this frequency. Calculate the power dissipation at a frequency of 50.0 Hz. Calculate the power factor at this frequency.
An L-R-C series circuit L = 0.121 H , R = 240 Ω , and C...
An L-R-C series circuit L = 0.121 H , R = 240 Ω , and C = 7.31 μF carries an rms current of 0.452 A with a frequency of 400 Hz . A. What is the phase angle B. What is the power factor for this circuit. C. What is the impedence of the circuit D. What is the RMS voltage of the source. E) What is the average rate at which electrical energy is converted to thermal energy...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
A 1.5-kΩ resistor and 30-mH inductor are connected in series, as shown below, across a 120-V...
A 1.5-kΩ resistor and 30-mH inductor are connected in series, as shown below, across a 120-V (rms) ac power source oscillating at 60-Hz frequency. (a) Find the current in the circuit. (b) Find the voltage drops across the resistor and inductor. (c) Find the impedance of the circuit. (d) Find the power dissipated in the resistor. (e) Find the power dissipated in the inductor. (f) Find the power produced by the source.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT