Question

When a mass is far away from the moon it has a speed 3.2 times its...

When a mass is far away from the moon it has a speed 3.2 times its escape velocity from the moon. With what speed in metres per second must the object have be launched from the surface of the moon? (Mmoon = 7.36 X 1022 kg; Rmoon = 1.74 X 106 kg)

The answer is 7970 m/s. Consider initial and final energy conditions

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem: Trip to the moon You plan to take a trip to the moon. Since you...
Problem: Trip to the moon You plan to take a trip to the moon. Since you do not have a traditional spaceship with rockets, you will need to leave the earth with enough speed to make it to the moon. Some information that will help during this problem: mearth = 5.9742 x 1024 kg rearth = 6.3781 x 106 m mmoon = 7.36 x 1022 kg rmoon = 1.7374 x 106 m dearth to moon = 3.844 x 108 m...
Imagine that an asteroid is approaching the Moon. While far away from the Moon it is...
Imagine that an asteroid is approaching the Moon. While far away from the Moon it is moving at 1 km/s, but as it approaches the Moon, it will accelerate due to the Moon’s gravity. The asteroid has a mass of 1012 kg. The Moon has a mass of 7.35x1022 kg and a radius of 1737 km. A) How fast will the asteroid be moving when it hits the surface of the Moon? B) How much kinetic energy will be released...
P1:Suppose an object is launched from Earth with 0.52 times the escape speed. How many multiples...
P1:Suppose an object is launched from Earth with 0.52 times the escape speed. How many multiples of Earth's radius (RE = 6.37 x 106 m) in radial distance will the object reach before falling back toward Earth? The distances are measured relative to Earth's center, so a ratio of 1.00 would correspond to an object on Earth's surface. For this problem, neglect Earth's rotation and the effect of its atmosphere. For reference, Earth's mass is 5.972 x 1024 kg. Your...
An astronaut is standing on the surface of a planetary satellite with no atmosphere that has...
An astronaut is standing on the surface of a planetary satellite with no atmosphere that has a radius of 1.74 × 106 m and a mass of 7.35 × 1022 kg. An experiment is planned where a projectile needs to be launched straight up from the surface. What must be the minimum initial speed of the projectile, so it will reach a height of 2.55 × 106 m above this satellite’s surface? (G = 6.67 × 10-11 N ∙ m2/kg2)
A small moon has a radius of 758 km. The acceleration due to gravity at its...
A small moon has a radius of 758 km. The acceleration due to gravity at its surface is 1.65 m/s^2. (Assume the moon to be spherical). a) Calculate the escape velocity for a small spaceship trying to leave the moon. b) If it leaves the surface with a radial velocity of 1010 m/s, how far from the surface will it go? c) If the spaceship accidentally drops a crate of cargo from 183.9 km above the surface, with what speed...
The moon is an Earth satellite of mass 9.35 x 1022 kg, whose average distance from...
The moon is an Earth satellite of mass 9.35 x 1022 kg, whose average distance from the centre of Earth is 4.85 x 108 m. What is the gravitational potential energy of the moon with respect to Earth? What is the kinetic energy and the velocity of the moon in Earth's orbit? What is the binding energy of the moon to Earth? What is the total mechanical energy of the moon in its orbit?
The escape velocity from a massive object is the speed needed to reach an infinite distance...
The escape velocity from a massive object is the speed needed to reach an infinite distance from it and have just slowed to a stop, that is, to have just enough kinetic energy to climb out of the gravitational potential well and have none left. You can find the escape velocity by equating the total kinetic and gravitational potential energy to zero. Given that consider any gas close to the surface of the Moon at a temperature of the Moon's...
Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 2.8...
Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 2.8 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
Zero, a hypothetical planet, has a mass of 6.0 x 1023 kg, a radius of 3.4...
Zero, a hypothetical planet, has a mass of 6.0 x 1023 kg, a radius of 3.4 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
Zero, a hypothetical planet, has a mass of 5.8 x 1023 kg, a radius of 3.4...
Zero, a hypothetical planet, has a mass of 5.8 x 1023 kg, a radius of 3.4 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT