Question

If a photon of energy E ejects electrons from a metal with kinetic energy KE, then...

If a photon of energy E ejects electrons from a metal with kinetic energy KE, then a photon with energy E/2.

Why the answer is "it might not eject any electrons?"

Homework Answers

Answer #1

According to the photoelectron effect principles,

the photon energy must be enough to remove the electron which is like the threshold energy required for the effect to happen.

Now the photon with energy E is able to eject electrons and also impart them a non-zero kinetic energy KE

Now since we do not know the magnitude of KE, and the work function and threshold .!!!

so when we reduce the photons energy by half it is very less likely that electrons can be produced in the first place.o

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal plate is found to be 0.57eV when the plate is illuminated with 500 nm light. (a) Given what we know about the relation of wavelength and energy, how much energy does a single photon of 500 nm light have? (b) Given the results of this experiment, how much energy must the electron have used to break free of the atom? (c) When the same...
Light with a frequency of 3.70 × 1015 Hz strikes a metal surface and ejects electrons...
Light with a frequency of 3.70 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 5.4 eV. What is the work function of the metal?
Light with a frequency of 3.22 × 1015 Hz strikes a metal surface and ejects electrons...
Light with a frequency of 3.22 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 6.7 eV. What is the work function of the metal?
Choose the most correct statement about the kinetic energy of electrons ejected by a metal exhibiting...
Choose the most correct statement about the kinetic energy of electrons ejected by a metal exhibiting the photoelectric effect. It is the energy of the photon that caused the ejection. It is the energy of the photon minus the work function for the metal. It is an energy level proportional to the work function for that metal. None of the above.
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 3.35 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 2.05 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons...
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons from sodium metal. c) If sodium is irradiated with light of 389 nm, what is the maximum possible kinetic energy of the emitted electrons?(answer in J) (d) What is the maximum number of electrons that can be freed by a burst of light (λ = 389 nm) whose total energy is 1.20 µJ? (answer in electrons)
Photoelectric effect: Do all electrons ejected from the metal surface have the same kinetic energy? If...
Photoelectric effect: Do all electrons ejected from the metal surface have the same kinetic energy? If so, why? Is this important for the interpretation of this lab?
Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. Part A...
Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. Part A What is the minimum frequency of light necessary to emit electrons from titanium via the photoelectric effect? Express your answer using three significant figures. ν =   s−1   SubmitMy AnswersGive Up Part B What is the wavelength of this light? Express your answer using three significant figures. λ =   nm   SubmitMy AnswersGive Up Part C This question will be shown after you complete previous question(s)....
Photons with a frequency of 5.6*10^14 s-1 are required to eject electrons from potassium metal. what...
Photons with a frequency of 5.6*10^14 s-1 are required to eject electrons from potassium metal. what is the kinetic energy of the ejected electrons when 450 nm photons shine on the metal?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT