Question

Light with a frequency of 3.70 × 1015 Hz strikes a metal surface and ejects electrons...

Light with a frequency of 3.70 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 5.4 eV. What is the work function of the metal?

Homework Answers

Answer #1

What is the work function of a metal?

Using a formula, we have

K.Emax = h f -

where, h = planck constant = 6.63 x 10-34 J.s

f = frequency of light = 3.70 x 1015 Hz

K.Emax = maximum kinetic energy = 5.4 eV = 8.6518 x 10-19 J

then, we get

(8.6518 x 10-19 J) = [(6.63 x 10-34 J.s) (3.70 x 1015 Hz)] -

= [(2.4531 x 10-18 J) - (8.6518 x 10-19 J)]

= 1.58792 x 10-18 J

Converting J into eV :

= [(1.58792 x 10-18 J) (6.241509 x 1018 eV/J)]

= 9.91 eV

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light with a frequency of 3.22 × 1015 Hz strikes a metal surface and ejects electrons...
Light with a frequency of 3.22 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 6.7 eV. What is the work function of the metal?
Light with a frequency of 2.21×10152.21×1015 Hz ejects electrons from the surface of calcium, which has...
Light with a frequency of 2.21×10152.21×1015 Hz ejects electrons from the surface of calcium, which has a work function of 2.87 eV. What is the minimum de Broglie wavelength of the ejected electrons?
Light with wavelegth 400 nanometers strikes a metal surface such that electrons are ejected with a...
Light with wavelegth 400 nanometers strikes a metal surface such that electrons are ejected with a maximum kinetic energy 2.13 x 10-19 Joules. Calculate the work function of this metal in electron volts. 2.0 eV 1.7 eV not enough information 2.8 eV 3.3 eV
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy...
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy of 3.25 eV are ejected from the metal. When light of frequency 4f is shined on the same metal, electrons of maximum energy 15.65 eV are ejected from the metal. Question: What is the work function of the metal?
When a metal was exposed to one photon of light at a frequency of 4.55× 1015...
When a metal was exposed to one photon of light at a frequency of 4.55× 1015 s–1, one electron was emitted with a kinetic energy of 4.10× 10–19 J. Calculate the work function of this metal. What is the maximum number of electrons that could be ejected from this metal by a burst of photons (at some other frequency) with a total energy of 5.11× 10–7 J?
When a metal was exposed to one photon of light at a frequency of 4.55× 1015...
When a metal was exposed to one photon of light at a frequency of 4.55× 1015 s–1, one electron was emitted with a kinetic energy of 4.10× 10–19 J. 1)Calculate the work function of this metal. 2) What is the maximum number of electrons that could be ejected from this metal by a burst of photons (at some other frequency) with a total energy of 5.11× 10–7 J?
When a metal was exposed to photons at a frequency of 4.90× 1015 s–1, electrons were...
When a metal was exposed to photons at a frequency of 4.90× 1015 s–1, electrons were emitted with a maximum kinetic energy of 4.00× 10–19 J. Calculate the work function of this metal. 2. What is the maximum number of electrons that could be ejected from this metal by a burst of photons (at some other frequency) with a total energy of 6.89× 10–7 J?​
When a metal was exposed to photons at a frequency of 3.51× 1015 s–1, electrons were...
When a metal was exposed to photons at a frequency of 3.51× 1015 s–1, electrons were emitted with a maximum kinetic energy of 5.60× 10–19 J. Calculate the work function of this metal. what is the maximum number of electrons that could be ejected from this metal by a burst of photons (at some other frequency) with a total energy of 1.78× 10–7 J?
Photons with a frequency of 8.9 1015 Hz shine on a piece of platinum (work function...
Photons with a frequency of 8.9 1015 Hz shine on a piece of platinum (work function = 6.4 eV). What is the energy of the ejected electrons? What is the de Broglie wavelength of the ejected electrons?
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT