Question

An object is pushed upwards at constant velocity for 8 m along a 30° inclined plane...

An object is pushed upwards at constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface is 0.4.

Calculate the work done by,

a. The applied force

b. The frictional force

c. The gravitational force

d. The net force

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 40 kg object is pushed upwards at constant velocity for 8 m along a 30°...
A 40 kg object is pushed upwards at constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface is 0.4. Calculate the work done by, a. The applied force b. The frictional force c. The gravitational force d. The net force
Lets go ahead and assume that there is a 40 kg object is pushed upwards that...
Lets go ahead and assume that there is a 40 kg object is pushed upwards that will be at a constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface will be 0.4. Please show the work for the following four forces below: Note: Please give small explanation on the parts with work and solution. a. Applied force b. Frictional force c. Gravitational force...
Question 26.) Lets go ahead and assume that there is a 40 kg object is pushed...
Question 26.) Lets go ahead and assume that there is a 40 kg object is pushed upwards that will be at a constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface will be 0.4. Please show the work for the following four forces below: a. Applied force b. Frictional force c. Gravitational force d. Net force
A 35 kg trunk is pushed 5.0 m at constant speed up a 30° incline by...
A 35 kg trunk is pushed 5.0 m at constant speed up a 30° incline by a constant horizontal force. The coefficient of kinetic friction between the trunk and the incline is 0.16. Calculate the work done by the applied horizontal force. Calculate the work done by the weight of the trunk. How much energy was dissipated by the frictional force acting on the trunk? From now suppose the 50 kg trunk is pushed 5.4 m at constant speed up...
A 36.5 kg box initially at rest is pushed 4.25 m along a rough, horizontal floor...
A 36.5 kg box initially at rest is pushed 4.25 m along a rough, horizontal floor with a constant applied horizontal force of 150 N. If the coefficient of friction between box and floor is 0.300, find the following. (a) the work done by the applied force J (b) the increase in internal energy in the box-floor system due to friction J (c) the work done by the normal force J (d) the work done by the gravitational force J...
18. A 34.5 kg box initially at rest is pushed 5.75 m along a rough, horizontal...
18. A 34.5 kg box initially at rest is pushed 5.75 m along a rough, horizontal floor with a constant applied horizontal force of 150 N. If the coefficient of friction between box and floor is 0.300, find the following. (a) the work done by the applied force ___J (b) the increase in internal energy in the box-floor system due to friction ___J (c) the work done by the normal force ___J (d) the work done by the gravitational force...
A box kg meters with constant speed on a rough inclined plane whose surface is 30...
A box kg meters with constant speed on a rough inclined plane whose surface is 30 ° with the horizontal. What is the magnitude of the work done by the friction force? A box of mass M = 5 kg slides 10 meters with constant speed on a rough inclined plane whose surface is 30 ° with the horizontal. What is the magnitude of the work done by the friction force?
A mass M slides downward along a rough plane surface inclined at angle \Theta\: Θ =...
A mass M slides downward along a rough plane surface inclined at angle \Theta\: Θ = 25.94 in degrees relative to the horizontal. Initially the mass has a speed V_0\: V 0 = 7.51 m/s, before it slides a distance L = 1.0 m down the incline. During this sliding, the magnitude of the power associated with the work done by friction is equal to the magnitude of the power associated with the work done by the gravitational force. What...
A box is pushed up an incline at a constant speed by a horizontal force of...
A box is pushed up an incline at a constant speed by a horizontal force of 30 N. The angle of the incline is 15.4 degrees. The box has a mass of 3.1 kg and moves a total distance of 2.96 m. The coefficient of kinetic friction between the box and the ramp is 0.59. What is the work done by the gravitational force during this motion? J What is the work done by the friction force during this motion?...
A box with a mass of 7.01 kg is sliding along a horizontal surface at constant...
A box with a mass of 7.01 kg is sliding along a horizontal surface at constant velocity. It is pulled by a horizontal force and the coefficient of kinetic friction between the box and the surface is 0.375. Part (a) What is the work done, in joules, by the pulling force as the box moves a distance of 0.495 m? Part (b) What is the work done, in joules, by the force of friction 33% Part (c) What is the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT