Question

A 35 kg trunk is pushed 5.0 m at constant speed up a 30° incline by...

A 35 kg trunk is pushed 5.0 m at constant speed up a 30° incline by a constant horizontal force. The coefficient of kinetic friction between the trunk and the incline is 0.16. Calculate the work done by the applied horizontal force. Calculate the work done by the weight of the trunk. How much energy was dissipated by the frictional force acting on the trunk? From now suppose the 50 kg trunk is pushed 5.4 m at constant speed up a 30° incline by a force along the plane (not as in the figure). The coefficient of kinetic friction between the trunk and the incline is 0.23. Calculate the work done by the applied force. Calculate the work done by the weight of the trunk. How much energy was dissipated by the frictional force acting on the trunk?

Homework Answers

Answer #1

using F = m g ( sin30 + u cos30 ) / cos30 - u sin30

F = 35 X 9.8 X ( sin30 + 0.16 cos30 ) / cos30 - 0.16 sin30

F = 278.651 N

WF = F cos30 d

= 278.65 X cos30 X 5

WF = 1206.5898 J

--- the work done by the weight of the trunk

W = m g d sin30

W = 50 X -9.8 X 5 X sin30

W = - 1225 J

then now energy was dissipated by the frictional force acting on the trunk

Wf = u X d X ( m g cos30 + F sin30 )

Wf = 0.23 X 5 X ( 50 X 9.8 X cos30 + 278.651 Xsin30 )

Wf = 0.23 X 5 X 563.677

Wf = 648.2296 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A constant horizontal force moves a 48 kg trunk 5.0 m along a 25 ° incline...
A constant horizontal force moves a 48 kg trunk 5.0 m along a 25 ° incline upward at constant speed. The coefficient of kinetic friction between the trunk and the incline is 0.23. What are (a) the work done by the applied force and (b) the increase in the thermal energy of the trunk and incline?
A box is pushed up an incline at a constant speed by a horizontal force of...
A box is pushed up an incline at a constant speed by a horizontal force of 30 N. The angle of the incline is 15.4 degrees. The box has a mass of 3.1 kg and moves a total distance of 2.96 m. The coefficient of kinetic friction between the box and the ramp is 0.59. What is the work done by the gravitational force during this motion? J What is the work done by the friction force during this motion?...
A 40 kg object is pushed upwards at constant velocity for 8 m along a 30°...
A 40 kg object is pushed upwards at constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface is 0.4. Calculate the work done by, a. The applied force b. The frictional force c. The gravitational force d. The net force
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.40 m/s. The pulling force is 98 N parallel to the incline, which makes an angle of 19.5° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.98 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 104 N parallel to the incline, which makes an angle of 20.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.92 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
An object is pushed upwards at constant velocity for 8 m along a 30° inclined plane...
An object is pushed upwards at constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface is 0.4. Calculate the work done by, a. The applied force b. The frictional force c. The gravitational force d. The net force
A 11.0-kg microwave oven is pushed 6.00 m up the sloping surface of a loading ramp...
A 11.0-kg microwave oven is pushed 6.00 m up the sloping surface of a loading ramp inclined at an angle of 35.9 ∘ above the horizontal, by a constant force F⃗ with a magnitude 113 N and acting parallel to the ramp. The coefficient of kinetic friction between the oven and the ramp is 0.241.. 1 What is the work done on the oven by the force F⃗ ? 2 What is the work done on the oven by the...
A 10.0-kg microwave oven is pushed 7.00 m up the sloping surface of a loading ramp...
A 10.0-kg microwave oven is pushed 7.00 m up the sloping surface of a loading ramp inclined at an angle of 36.9 ? above the horizontal, by a constant force F with a magnitude 109 N and acting parallel to the ramp. The coefficient of kinetic friction between the oven and the ramp is 0.259. A.What is the work done on the oven by the force F? ? B.What is the work done on the oven by the friction force?...
Part 1) A 1.0 kg block is pushed 2.0 m at a constant velocity up a...
Part 1) A 1.0 kg block is pushed 2.0 m at a constant velocity up a vertical wall by a constant force applied at an angle of 29.0 ◦ with the horizontal, as shown in the figure. The acceleration of gravity is 9.81 m/s 2. Drawing not to scale. If the coefficient of kinetic friction between the block and the wall is 0.20, find a) the work done by the force on the block. Answer in units of J. Part...
18. A 34.5 kg box initially at rest is pushed 5.75 m along a rough, horizontal...
18. A 34.5 kg box initially at rest is pushed 5.75 m along a rough, horizontal floor with a constant applied horizontal force of 150 N. If the coefficient of friction between box and floor is 0.300, find the following. (a) the work done by the applied force ___J (b) the increase in internal energy in the box-floor system due to friction ___J (c) the work done by the normal force ___J (d) the work done by the gravitational force...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT