Question

18. A 34.5 kg box initially at rest is pushed 5.75 m along a rough, horizontal...

18.

A 34.5 kg box initially at rest is pushed 5.75 m along a rough, horizontal floor with a constant applied horizontal force of 150 N. If the coefficient of friction between box and floor is 0.300, find the following.

(a) the work done by the applied force
___J
(b) the increase in internal energy in the box-floor system due to friction
___J
(c) the work done by the normal force
___J
(d) the work done by the gravitational force
___J
(e) the change in kinetic energy of the box
___J
(f) the final speed of the box
___m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
As shown in the figure below, a box of mass m = 64.0 kg (initially at...
As shown in the figure below, a box of mass m = 64.0 kg (initially at rest) is pushed a distance d = 80.0 m across a rough warehouse floor by an applied force of FA = 222 N directed at an angle of 30.0° below the horizontal. The coefficient of kinetic friction between the floor and the box is 0.100. Determine the following. (For parts (a) through (d), give your answer to the nearest multiple of 10.) (a) work...
A 40 kg object is pushed upwards at constant velocity for 8 m along a 30°...
A 40 kg object is pushed upwards at constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface is 0.4. Calculate the work done by, a. The applied force b. The frictional force c. The gravitational force d. The net force
An object is pushed upwards at constant velocity for 8 m along a 30° inclined plane...
An object is pushed upwards at constant velocity for 8 m along a 30° inclined plane by the horizontal force F. The coefficient of kinetic friction between the box and the surface is 0.4. Calculate the work done by, a. The applied force b. The frictional force c. The gravitational force d. The net force
A box is pushed up an incline at a constant speed by a horizontal force of...
A box is pushed up an incline at a constant speed by a horizontal force of 30 N. The angle of the incline is 15.4 degrees. The box has a mass of 3.1 kg and moves a total distance of 2.96 m. The coefficient of kinetic friction between the box and the ramp is 0.59. What is the work done by the gravitational force during this motion? J What is the work done by the friction force during this motion?...
A 35 kg trunk is pushed 5.0 m at constant speed up a 30° incline by...
A 35 kg trunk is pushed 5.0 m at constant speed up a 30° incline by a constant horizontal force. The coefficient of kinetic friction between the trunk and the incline is 0.16. Calculate the work done by the applied horizontal force. Calculate the work done by the weight of the trunk. How much energy was dissipated by the frictional force acting on the trunk? From now suppose the 50 kg trunk is pushed 5.4 m at constant speed up...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with...
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with a force of 12 N. The force of kinetic friction is 3N. a. Draw a free-body diagram of the situation. b. Find the work done by the 12 N force on the block to move the block 3m? c. Find the work done by the force of friction on the block when the block was moved 3m? d. Use the work-energy principle to find...
A 48.0-kg box is being pushed a distance of 6.04 m across the floor by a...
A 48.0-kg box is being pushed a distance of 6.04 m across the floor by a force P whose magnitude is 162 N. The force P is parallel to the displacement of the box. The coefficient of kinetic friction is 0.206. Determine the work done on the box by (a) the applied force, (b) the friction force, (c) the normal force, and (d) by the force of gravity. Be sure to include the proper plus or minus sign for the...
A box of mass 730 kg is being pulled at a constant speed across a rough...
A box of mass 730 kg is being pulled at a constant speed across a rough horizontal floor by a constant force, F. The angle of this force above the horizontal is such that the force you apply is a minimum (that is, the amount of force you need to move the box at a constant speed across the floor depends on the angle at which you pull - find the angle which the force is a minimum). Calculate the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT