Question

In a 25 m pool there are 3 flip turns during a 100 m race. Please...

  1. In a 25 m pool there are 3 flip turns during a 100 m race. Please definine the vector direction (+, 0, or -) for both velocity and acceleration and describe the motion for each of the following points of the race (Assume they start the race moving in the positive direction from the starting block):
    1. Approaching the wall for Turn 1
      1. V:
      2. A:
      3. Description of Motion:
    2. Leaving the wall from Turn 1
      1. V:
      2. A:
      3. Description of Motion:
    3. Approaching the wall for Turn 2
      1. V:
      2. A:
      3. Description of Motion:
    4. Leaving the wall from Turn 2
      1. V:
      2. A:
      3. Description of Motion:
    5. Approaching the wall for Turn 3
      1. V:
      2. A:
      3. Description of Motion:
    6. Leaving the wall from Turn 3
      1. V:
      2. A:
      3. Description of Motion:

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet with mass 25 g and initial horizontal velocity 320 m/s strikes a block of...
A bullet with mass 25 g and initial horizontal velocity 320 m/s strikes a block of mass 2 kg that rests on a frictionless surface and is attached to one end of a spring. The bullet becomes embedded in the block. The other end of the spring is attached to the wall. The impact compress the spring a maximum distance of 25 cm . After the impact, the block moves in simple harmonic motion. 1. What is the frequency of...
Kathy is running a 100 m race. When the starter’s pistol fires, she leaves the starting...
Kathy is running a 100 m race. When the starter’s pistol fires, she leaves the starting block and continues speeding up until 4 s into the race, when she reaches her top speed of 9 m/s. She holds this speed for 5 s; then her speed has slowed to 7 m/s by the time she crosses the finish line 12 s after she started the race. The data for the race is presented in table below. Time (sec) Velocity (m/s)...
A fish swimming in a horizontal plane has a velocity vo=(4i+j) m/sec at a point in...
A fish swimming in a horizontal plane has a velocity vo=(4i+j) m/sec at a point in the ocean whose position vector is r0=(10i-4j)m. After the fish swims with constant acceleration for 20 sec, its velocity is v=(20i-5j) m/s. Find 1.The components of the acceleration.2.The direction of the acceleration with respect to the x-axis.3.The coordinates of the fish at t=25 sec and its direction of motion.
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen...
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen from above. Three forces of magnitudes F1=4.00NF1=4.00N, F2=6.00NF2=6.00N, and F3=8.00NF3=8.00N are applied to the block, initially at rest on the surface, at angles shown on the diagram. (Figure 1) In this problem, you will determine the resultant (total) force vector from the combination of the three individual force vectors. All angles should be measured counterclockwise from the positive x axis (i.e., all angles are...
A sprinter is practicing her starts on a 100 m long straight track. From rest, she...
A sprinter is practicing her starts on a 100 m long straight track. From rest, she starts running with an acceleration of 4.2 m/s2 until she reaches her top speed of 10 m/s. Once up to speed, she immediately relaxes, decelerating slowly at a rate of -1.3 m/s2 until she comes to a stop. (a) Draw the motion diagram (including velocity vectors) for the sprinter. Please label her starting point and end point, and where she reaches her maximum speed....
You throw a ball vertically upward with an initial velocity of 10 m/s from a window...
You throw a ball vertically upward with an initial velocity of 10 m/s from a window located 20 m above the ground. Knowing that the acceleration of the ball is constant and equal to 9.81 m/s^2 downward (this makes for negative acceleration as upward motion is positive and downward motion is negative and gravity pulls downward), determine: (a) The acceleration at t = 2 s (b) The equation for velocity (Because you are looking for an equation for velocity, you...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...
3-A 1.0 kg block slides down an inclined plane of 39 0  from the horizontal. If the...
3-A 1.0 kg block slides down an inclined plane of 39 0  from the horizontal. If the block  starts from rest and hits the bottom in 5.1 s, what is the speed of the block, in the unit m/s, at the bottom of the incline? Assume a frictionless plane. 4-A bus negotiates a turn of radius 103 m while traveling at a speed of 92 km/h. If slipping just begins at this speed, what is the coefficient of static friction between the...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with constant velocity enters a region containing a constant magnetic field that is directed along the z-axis at (x,y) = (0,0) as shown. The magnetic field extends for a distance D = 0.75 m in the x-direction. The proton leaves the field having a velocity vector (vx, vy) = (3.9 X 105 m/s, 1.9 X 105 m/s). 1)What is v, the magnitude of the velocity...
Your task will be to derive the equations describing the velocity and acceleration in a polar...
Your task will be to derive the equations describing the velocity and acceleration in a polar coordinate system and a rotating polar vector basis for an object in general 2D motion starting from a general position vector. Then use these expressions to simplify to the case of non-uniform circular motion, and finally uniform circular motion. Here's the time-dependent position vector in a Cartesian coordinate system with a Cartesian vector basis: ⃗r(t)=x (t) ̂ i+y(t) ̂ j where x(t) and y(t)...