Question

A hydrogen atom is in its excited 2p state. Calculate the transition rate associated with the...

A hydrogen atom is in its excited 2p state. Calculate the transition rate associated with the 2p --> 1s transitions (Lyman) and the lifetime of the 2p state.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A single hydrogen atom, initially in a 2p state, will decay to its 1s state with...
A single hydrogen atom, initially in a 2p state, will decay to its 1s state with emission of a photon of wave number k at a rate R1 when it is in a zero-temperature environment. If, however, there are already four photons of wave number k already present, it will decay at a rate R2. What is the ratio R2/R1?
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a...
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a different state, and a photon is either emitted or absorbed. Answer the following conceptual questions: What is the quantum number of the third excited state? When an atom emits a photon, is the final quantum number of the atom greater than or less than the initial quantum number? When an atom absorbs a photon, is the final quantum number of the atom greater than...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
1. a) Can a hydrogen atom in the ground state absorb a Balmer series hydrogen alpha...
1. a) Can a hydrogen atom in the ground state absorb a Balmer series hydrogen alpha photon? Explain why or why not. b) Can a hydrogen atom in the first excited state absorb a Lyman series hydrogen alpha photon? Explain why or why not. Can a hydrogen atom in the first excited state emit a Lyman series hydrogen alpha photon? Explain why or why not.
A hydrogen atom transitions from the n = 6 excited state to the n = 3...
A hydrogen atom transitions from the n = 6 excited state to the n = 3 excited state, emitting a photon. a) What is the energy, in electron volts, of the electron in the n = 6 state? How far from the nucleus is the electron? b) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? What is the wavelength of this photon? c) How many different possible photons could the n = 6...
calculate the transition probability aik and the natural line width of the transition 3s to 2p...
calculate the transition probability aik and the natural line width of the transition 3s to 2p in the hydrogen atom if the lifetimes of the states t(3s) = 23 ns and t(2p) = 2.1 ns, compare this to the Doppler width of this transition at T = 300k
An electron in an excited state of a hydrogen atom emits two photons in succession, the...
An electron in an excited state of a hydrogen atom emits two photons in succession, the first at 3037 nm and the second at 94.92 nm, to return to the ground state (n=1). For a given transition, the wavelength of the emitted photon corresponds to the difference in energy between the two energy levels. What were the principal quantum numbers of the initial and intermediate excited states involved?
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon....
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon. Determine the maximum possible orbital angular momentum of the electron after emission. Express your answer as multiples of hbar.
Astronomers have detected hydrogen atoms in interstellar space in the n=746 excited state. Suppose an atom...
Astronomers have detected hydrogen atoms in interstellar space in the n=746 excited state. Suppose an atom in this excited state undergoes a transition from n=746 to n=731. What is the atoms change in energy as the result of this transition? What is the wavelength of radiation corresponding to this transition? What kind of telescope would astronomers need in order to detect radiation of this wavelength?
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Calculate the second shortest wavelength emitted.