Question

1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...

1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition?

b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition?

c. When the electron returns from its excited state to its ground state, a photon is emitted. Calculate the wavelength (in nanometers) and the frequency of this photon.

Homework Answers

Answer #1

Q1

a)

Apply Rydberg Formula

E = R*(1/nf^2 – 1/ni ^2)

R = -2.178*10^-18 J

Nf = final stage/level

Ni = initial stage/level

E = Energy per unit (i.e. J/photon)

E = (-2.178*10^-18)*(1/6^2 – 1/1 ^2)

E = 2.1175*10^-18 J/photon

b)

gaineddE = -Elost

then

E = -2.1175*10^-18J/photon, negative because it is losing it

c)

For the wavelength:

WL = h c / E

h = Planck Constant = 6.626*10^-34 J s

c = speed of particle (i.e. light) = 3*10^8 m/s

E = energy per particle J/photon

WL = wavelength in meters

WL = (6.626*10^-34)(3*10^8)/(2.1175*10^-18)

WL = 9.3874*10^-8 m

to nanometers:

WL = (9.3874*10^-8)(10^9) = 93.87 nm

v = c/WL = (3*10 ^8)/( 9.3874*10^-8) = 3.19*10^15 Hz

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hydrogen atom (Z = 1) is in the third excited state, and a photon is...
A hydrogen atom (Z = 1) is in the third excited state, and a photon is either emitted or absorbed. Determine (a) the quantum number nf of the final state (b) the energy of the photon when the photon is emitted with the shortest possible wavelength (c) the quantum number nf of the final state (d) the energy of the photon when the photon is emitted with the longest possible wavelength (e) the quantum number nf of the final state...
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a...
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a different state, and a photon is either emitted or absorbed. Answer the following conceptual questions: What is the quantum number of the third excited state? When an atom emits a photon, is the final quantum number of the atom greater than or less than the initial quantum number? When an atom absorbs a photon, is the final quantum number of the atom greater than...
Explain why a hydrogen atom with its electron in the ground state cannot absorb a photon...
Explain why a hydrogen atom with its electron in the ground state cannot absorb a photon of just any energy when making a transition to the second excited state (n = 3).
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a...
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n = 2 to an orbital in which n = 5. Determine the wavelength of light emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 6 to an orbital in n = 5.
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes...
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n=2 to an orbital in which n=7. Express the wavelength in nanometers to three significant figures. B. An electron in the n=6 level of the hydrogen atom relaxes to a lower energy level, emitting light of λ=93.8nm. Find the principal level to which the electron relaxed. Express your answer as an integer. Can you explain it in...
An electron in a hydrogen atom makes a transition from the n = 68 to the...
An electron in a hydrogen atom makes a transition from the n = 68 to the n = 4 energy state. Determine the wavelength of the emitted photon (in nm).
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is...
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is -2.179×10-18 J. What is the energy of the electron in level n=5? -8.716×10-20 J 2.The electron in a hydrogen atom moves from level n=6 to level n=4. a) Is a photon emitted or absorbed? b) What is the wavelength of the photon?
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
An electron in a hydrogen atom makes a transition from the n = 7 to the...
An electron in a hydrogen atom makes a transition from the n = 7 to the n = 2 energy state. Determine the wavelength of the emitted photon (in nm). Enter an integer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT