Question

The hydrogen atom, changing from its first excited state to its lowest energy state, emits light...

The hydrogen atom, changing from its first excited state to its lowest energy state, emits light with a wavelength of 122 nm. That is in the far ultraviolet. The sodium atom, which like hydrogen has one electron that gets excited outside a core of 10 other electrons, emits light at 589 nm making a similar transition from its first excited state to its lowest state. Which of these statements would be true about the sodium and hydrogen atoms and their spectra? THERE IS MORE THAN ONE CORRECT ANSWER

a. There would be other series of spectral lines ending on the first excited states of both atoms.

b. There would be a series of spectral lines in sodium with the longest wavelength one at 589 nm.

c. There would be a series of spectral lines in hydrogen with the longest wavelength one at 122 nm.

d. The hydrogen atom binds its electron more tightly than the sodium atom does, and would require more energy to remove its electron completely.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron in an excited state of a hydrogen atom emits two photons in succession, the...
An electron in an excited state of a hydrogen atom emits two photons in succession, the first at 3037 nm and the second at 94.92 nm, to return to the ground state (n=1). For a given transition, the wavelength of the emitted photon corresponds to the difference in energy between the two energy levels. What were the principal quantum numbers of the initial and intermediate excited states involved?
The electron in a hydrogen atom is excited to the n = 6 shell and emits...
The electron in a hydrogen atom is excited to the n = 6 shell and emits electromagnetic radiation when returning to lower energy levels. Determine the number of spectral lines that could appear when this electron returns to the lower energy levels, as well as the wavelength range in nanometers.
An excited hydrogen atom emits light with a wavelength of 397.2 nm to reach the energy...
An excited hydrogen atom emits light with a wavelength of 397.2 nm to reach the energy level for which n = 2. In which principal quantum level did the electron begin? (c = 3.00 x 108 m/s, h = 6.63 x 10-34 J•s, RH = 2.18 x 10-18J).
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon....
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon. Determine the maximum possible orbital angular momentum of the electron after emission. Express your answer as multiples of hbar.
A mercury atom is initially in its lowest possible (or ground state) energy level. The atom...
A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.924 x 10^14 Hz. At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a...
A hydrogen atom, initially at rest in the laboratory, emits one photon, with the lowest energy...
A hydrogen atom, initially at rest in the laboratory, emits one photon, with the lowest energy possible, in the Lyman spectral series. a.Which two energy levels are involved in this transition, and what are their energies? b.What is the energy and momentum of the emitted photon? c.What fraction of this energy is carried away by the recoiling atom (Hint: use conservation of momentum).
A hydrogen atom is in its first excited state (n = 2). Using Bohr's atomic model,...
A hydrogen atom is in its first excited state (n = 2). Using Bohr's atomic model, calculate the following. (a) the radius of the electron's orbit (in nm) nm (b) the potential energy (in eV) of the electron eV (c) the total energy (in eV) of the electron eV
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a...
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a different state, and a photon is either emitted or absorbed. Answer the following conceptual questions: What is the quantum number of the third excited state? When an atom emits a photon, is the final quantum number of the atom greater than or less than the initial quantum number? When an atom absorbs a photon, is the final quantum number of the atom greater than...
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT