Question

1. a) Can a hydrogen atom in the ground state absorb a Balmer series hydrogen alpha...

1. a) Can a hydrogen atom in the ground state absorb a Balmer series hydrogen alpha photon? Explain why or why not.

b) Can a hydrogen atom in the first excited state absorb a Lyman series hydrogen alpha photon? Explain why or why not.

Can a hydrogen atom in the first excited state emit a Lyman series hydrogen alpha photon? Explain why or why not.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Explain why a hydrogen atom with its electron in the ground state cannot absorb a photon...
Explain why a hydrogen atom with its electron in the ground state cannot absorb a photon of just any energy when making a transition to the second excited state (n = 3).
Determine the wavelengths of the three lowest Lyman and Balmer transitions of the Hydrogen atom. Hint:...
Determine the wavelengths of the three lowest Lyman and Balmer transitions of the Hydrogen atom. Hint: These series are important in Astronomy and in Optical Spectroscopy, since a lot of UV-VIS spectrometers use Deuterium arc lamps. Answer: Lyman 2 – 1 : λ = 121.6 nm.
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
In a certain one-electron atom, the longest wavelength at which the atom in its ground state...
In a certain one-electron atom, the longest wavelength at which the atom in its ground state can absorb a photon is 7.598 nm. What is the next longest wavelength at which a photon can be absorbed from the ground state of this atom?
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.57 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.57 nm. It then gives off a photon having a wavelength of 954.3 nm. What is the final state of the hydrogen atom? Values for physical constants can be found here.
A mercury atom is initially in its lowest possible (or ground state) energy level. The atom...
A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.924 x 10^14 Hz. At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a...
For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that...
For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that results from the transition n = 3 to n = 1. The Rydberg constant is 2.18 x 10^-18 J.
What is the magnitude of the energy difference between the ground state of a hydrogen atom...
What is the magnitude of the energy difference between the ground state of a hydrogen atom and the second excited state?
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm. It then gives off a photon having a wavelength of 383.4 nm. What is the final state of the hydrogen atom? Values for physical constants can be found here. nf= please try to show solution
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT