Question

an aluminum pipe .655 m long at 20 deg celsius and open on both ends, is...


an aluminum pipe .655 m long at 20 deg celsius and open on both ends, is used as a flute. the pipe is cooled to a low temperature, but then filled with air at 20 deg celsius as soon as you start to play it. after that by how much does its fundamental frequency change as the metal rises in temperature from 5 deg celsius to 20 deg celsius?

Homework Answers

Answer #1

The pipe is open at both ends. Therefore, its fundamental frequency is given by

..........(1), v is velocity of sound and L is length of tube.

Speed of sound at Celsius = 331 m/s

Speed of sound at 50 Celsius   

m/s

m/s

Speed of sound at 200 C   

m/s

Now, fundamental frequency at 50 C, from equation (1)

Hz

Now, fundamental frequency at 200 C,

Hz

Therefore, change in fundamental frequency,

Hz

Therefore, 6.87 Hz is the required fundamental frequency change.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...
A) What is the length of a pipe which is open at both ends with a...
A) What is the length of a pipe which is open at both ends with a fundamental frequency of 262.2 Hz at room temperature? B) What is the length of a pip which is closed at end and has a fundamental frequency of 271.1 Hz at room temperature? C) A pipe has resonances at 428.8 Hz, 600.3 Hz, and 771.8 Hz with no resonances in between. Is the pipe open at both ends or closed at one end? Explain your...
An organ pipe open at both ends is to be designed so that the fundamental frequency...
An organ pipe open at both ends is to be designed so that the fundamental frequency it plays is 220 Hz. a. What length of pipe is needed? b. If one end of the pipe is stopped up, what other note (frequency) can this same pipe play? c. Draw the fundamental frequency for the pipe open at both ends and when it is closed at one end. d. Calculate and draw the next higher harmonic when one end of the...
A pipe open at both ends has a fundamental frequency of 3.00 3 102 Hz when...
A pipe open at both ends has a fundamental frequency of 3.00 3 102 Hz when the temperature is 0°C. (a) What is the length of the pipe? (b) What is the fundamental frequency at a temperature of 30.0°C?
An pipe of length L that is open at both ends is resonating at its fundamental...
An pipe of length L that is open at both ends is resonating at its fundamental frequency. Which statement about the sound is correct?(No answer choices are shown)
a wooden tube, 1.2 meters long and open at both ends produces sound when it hits....
a wooden tube, 1.2 meters long and open at both ends produces sound when it hits. The tube has a diameter of 3 cm. the temp in the room is 34 degrres Celcius: a) what is the frequency if the third harmonic? b) the tube was filled with a gas and the frequency of the fundamental was changed to 400 Hz. What is the speed of sound in the gas?
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s....
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s. A. What are the fundamental and first three audible overtones if the pipe is closed at one end? B. What are the fundamental and first three audible overtones if the pipe is open at both ends?
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
What is the beat frequency heard when two organ pipes, each open at both ends, are...
What is the beat frequency heard when two organ pipes, each open at both ends, are sounded together at their fundamental frequencies if one pipe is 52 cm long and the other is 62 cm long?(The speed of sound is 340 m/s). Answer in Hz
A 1.20 m long column of air in a pipe organ, that is closed on only...
A 1.20 m long column of air in a pipe organ, that is closed on only one side, plays its very low fundamental frequency. If the temperature of the air is 22.4 degC, what is that frequency?     A string of length 0.0140 m is pulled across the top of the column of air, and causes it to vibrate in its 2nd overtone, what is the velocity of the wave on the string?