Question

There is a medicine to check if you have a lovesick. When tested on a person...

There is a medicine to check if you have a lovesick.
When tested on a person with a lovesick with this drug, the probability of being positive is 0.95 (95%).
And the probability of being positive is 0.1 (10%) without getting lovesick.
The number of people with lovesickness is 0.5%.
Find the following probabilities:

(a) What is the probability that the test will produce positive results?
(b) If the test results are positive, what is the probability that the person has a lovesick?
(c) If the test results are negative, what is the probability that the person is not suffering from lovesickness?
(d) What is the probability of misjudgment?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. A diagnostic test has 95% sensitivity (the probability a person with the condition tests positive...
3. A diagnostic test has 95% sensitivity (the probability a person with the condition tests positive = 0.95) and 95% specificity (the probability a person without the condition tests negative = 0.95). In a population of people given the test, 1% of the people have the condition (probability a person has the condition = 0.01). (a) What proportion of the people will test positive? (b) Given a person has tested positive, what is the probability he/she has the condition?
Suppose we assume that 5% of people are drug users. If a person is a drug...
Suppose we assume that 5% of people are drug users. If a person is a drug user, the result of the test is positive 95% of the time, and if the person is not a drug user, the result is negative 90% of the time. A person is randomly selected. What is the probability that he tests positive for drugs?
It is known that, on average, one hundred people (1 in 100) have a particular disease....
It is known that, on average, one hundred people (1 in 100) have a particular disease. A diagnostic test is devised to screen for this disease. A positive result is one that suggests that the person has the disease, and a negative result is one that suggests that the person does not have the disease. The possibility of errors in the test gives the following result probabilities: For a person who has the disease, the probability of a positive result...
Suppose that the fraction of infected people in a city is p = 0.01. 100 people...
Suppose that the fraction of infected people in a city is p = 0.01. 100 people from the city board a small cruise. You can assume that the people are unrelated to each other and randomly chosen so that each person is infected independently with probability p. You can also ignore the possibility that they infect each other while boarding. Suppose that the virus test gives negative when the person has the virus with probability 0.2, and gives negative when...
Suppose that the fraction of infected people in a city is p = 0.01. 100 people...
Suppose that the fraction of infected people in a city is p = 0.01. 100 people from the city board a small cruise. You can assume that the people are unrelated to each other and randomly chosen so that each person is infected independently with probability p. You can also ignore the possibility that they infect each other while boarding. Suppose that the virus test gives negative when the person has the virus with probability 0.2, and gives negative when...
Suppose that a medical test run on 372 people resulted in 38 positive results. Of those,...
Suppose that a medical test run on 372 people resulted in 38 positive results. Of those, 22 people were eventually confirmed to have the illness. Among the people who tested negative, 3 were eventually diagnosed through other means, and the rest were healthy. Find the sensitivity of the test, the specificity of the test, and the positive and negative predictive values. The positive predictive value is the probability that a person is ill given that they tested positive, and the...
Suppose you are analyzing a test for a blood disease where • 94% of people with...
Suppose you are analyzing a test for a blood disease where • 94% of people with the disease test positive. • Only 0.5% of the population has this disease. • The false-positive rate is 0.1%. (a) What is the test’s precision, that is the probability that a person with a positive test has the disease? (b) What is the accuracy of the test, that is the probability that either a person tests positive AND has the disease OR a person...
Consider a laboratory test to detect a disease. Let A = {event that the tested person...
Consider a laboratory test to detect a disease. Let A = {event that the tested person has the disease} B = {event that the test result is positive} and it is known that P(B|A) = 0.99, P(B|Ac ) = 0.005, and 0.1 percent of the population actually has the disease. What is the probability that a person has the disease given that a test is positive? a. Work the problem analytically. b. Write a MATLAB simulator to verify your answer.
To determine whether or not they have a certain desease, 80 people are to have their...
To determine whether or not they have a certain desease, 80 people are to have their blood tested. However, rather than testing each individual separately, it has been decided first to group the people in groups of 16. The blood samples of the 16 people in each group will be pooled and analyzed together. If the test is negative, one test will suffice for the 16 people (we are assuming that the pooled test will be positive if and only...
12. A diagnostic test has a probability0.95 of giving a positive result when applied to a...
12. A diagnostic test has a probability0.95 of giving a positive result when applied to a person suffering from a certain disease, and a probability0.10 of giving a (false) positive when applied to a non-sufferer. It is estimated that 0.5 % of the population are sufferers. Suppose that the test is now administered to a person about whom we have no relevant information relating to the disease (apart from the fact that he/she comes from this population). Calculate the following...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT