Question

A 5.60 µC charge with a mass of 1.23 g has an initial speed of 4.00...

A 5.60 µC charge with a mass of 1.23 g has an initial speed of 4.00 m/s. It slows down as it travels through a potential difference of 355 V. What is the final speed of the charge?

Homework Answers

Answer #1

For this question Work- Energy theorem is to be applied. According to this theorem, work done by the force is equal to the change in kinetic energy.

Since here the charge is slow down when it go through the potential difference, it can be concluded that charge is going towards higher potential from lower, as it is positive charge, hence it will slow down.

Solution is attached here with the scanned sheet.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the speed of a proton that is accelerated through a potential difference of 48 V...
Calculate the speed of a proton that is accelerated through a potential difference of 48 V to −8 V. The mass of the proton is mp = 1.67 × 10−27 kg, and its charge is qp = 1.60 × 10−19 C. The proton has an initial speed vi = 65 m/s.
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into...
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into and passes through a block of mass 5 kg, as shown in the figure. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring of force constant 538 N/m. If the block moves a distance 1.3 cm to the right after the bullet passed through it, find the speed v at which the bullet emerges from the block and...
Particle A (of mass m and charge q) and particle B (of mass 6m and charge...
Particle A (of mass m and charge q) and particle B (of mass 6m and charge 2q) are each accelerated from rest through the same potential difference of 5000 V. Which one of the following statements regarding their resulting speeds is TRUE: Select one: The speed of particle B is 3 times the speed of particle A. The speed of particle B is √3 times the speed of particle A. The speed of particle A is √3 times the speed...
A)Question based on content covered on Tuesday. A particle of mass 10-4 kg and charge q1...
A)Question based on content covered on Tuesday. A particle of mass 10-4 kg and charge q1 = 1.0 µC is shot at a speed of 10 m/s directly towards another particle q2 = 1µC that is held fixed. The initial distance between the two particles is 1.5 m, and your goal is to figure out how close q1 gets to q2. We will do that in several steps. What types of initial and final energy are present in the system...
Consider a pebble of mass m=34 g launched from initial height h=7.1 m with speed v=5.1...
Consider a pebble of mass m=34 g launched from initial height h=7.1 m with speed v=5.1 m/s at angle θ=42 degrees above the horizontal. Just before the pebble lands on the ground is has a speed v=10.2 m/s. What is the work done on the pebble an external force (wind? air drag?) Provide your answer in joules, use three significant figures.
A charge of -8.1 µC is traveling at a speed of 8.4 106 m/s in a...
A charge of -8.1 µC is traveling at a speed of 8.4 106 m/s in a region of space where there is a magnetic field. The angle between the velocity of the charge and the field is 52°. A force of magnitude 4.9 10-3 N acts on the charge. What is the magnitude of the magnetic field?
Two point charges of charge 25.0 µC and −25.0 µC respectively are separated by a distance...
Two point charges of charge 25.0 µC and −25.0 µC respectively are separated by a distance of 10.0 nm. a) What is the dipole moment magnitude and direction? b) How much energy does it require to rotate this dipole 180◦ in a constant electric field of 1200 V/m assuming the initial orientation is such that the dipole moment points along the electric field lines? c) What is the maximum torque? d) Draw the electric potential line pattern.
To practice Problem-Solving Strategy 21.1 Conservation of energy in charge interactions. An alpha particle (α), which...
To practice Problem-Solving Strategy 21.1 Conservation of energy in charge interactions. An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V . The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27...
A charged particle of mass m=1.116 g and charge q=0.968 μC is moving in the xz-plane...
A charged particle of mass m=1.116 g and charge q=0.968 μC is moving in the xz-plane (unit vectors i and k) under the action of both Earth's gravity g=−g k and the electric field E=−E i, where magnitude E=7.02 kV/m. The particle started at position x0=z0=0 with the initial velocity v0=v0i, the initial speed being v0=0.74 m/s. At some point later in time, the particle is found in a position with the z-coordinate z=-32.8 cm. What is the x-coordinate of...
A charged particle of mass m=1.242 g and charge q=1.144 μC is moving in the xz-plane...
A charged particle of mass m=1.242 g and charge q=1.144 μC is moving in the xz-plane (unit vectors i and k) under the action of both Earth's gravity g=−g k and the electric field E=−E i, where magnitude E=10.8 kV/m. The particle started at position x0=z0=0 with the initial velocity v0=v0i, the initial speed being v0=0.98 m/s. At some point later in time, the particle is found in a position with the z-coordinate z=-32.8 cm. What is the x-coordinate of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT