Question

Particle A (of mass m and charge q) and particle B (of mass 6m and charge...

Particle A (of mass m and charge q) and particle B (of mass 6m and charge 2q) are each accelerated from rest through the same potential difference of 5000 V. Which one of the following statements regarding their resulting speeds is TRUE:

Select one:

The speed of particle B is 3 times the speed of particle A.

The speed of particle B is √3 times the speed of particle A.

The speed of particle A is √3 times the speed of particle B.

Particle A has the same speed as particle B.

The speed of particle A is 3 times the speed of particle B.

Homework Answers

Answer #1

Answer:- The speed of particle A is √3 times the speed of particle B.

Solution:

Expression for the final velocity of a charged particle accelerated through potential difference V is given by,

s = (2*charge*V/Mass)½

Now first for particle A,

sA = (2* q* 5000/m)½

sA = (10000*q/m)½

Now for particle B,

sB = (2 * 2q*5000/6m)½

sB = (10000*q/3m)½

The ratio oh their speed's is,

sA/sB = (10000*q/m)½ / (10000*q/3m)½

sA/sB = √3

sA= √3 * sB

Thus the speed of paricle A is √3 times of particle B.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It...
An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It is accelerated from rest through a potential difference that has a value of 1.45 × 106 V and then enters a uniform magnetic field whose magnitude is 1.75 T. The α-particle moves perpendicular to the magnetic field at all times. What is (a) the speed of the α-particle, (b) the magnitude of the magnetic force on it, and (c) the radius of its circular...
An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It...
An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It is accelerated from rest through a potential difference that has a value of 1.71 × 106 V and then enters a uniform magnetic field whose magnitude is 1.54 T. The α-particle moves perpendicular to the magnetic field at all times. What is (a) the speed of the α-particle, (b) the magnitude of the magnetic force on it, and (c) the radius of its circular...
A proton (mass mp), a deuteron (m = 2mp, Q = e), and an alpha particle...
A proton (mass mp), a deuteron (m = 2mp, Q = e), and an alpha particle (m = 4mp, Q = 2e), are accelerated by the same potential difference V and then enter a uniform magnetic field B where they move in circular paths perpendicular to B. Determine the radius of the paths for the deuteron and alpha particle in terms of that for the proton. R deuteron R alpha
To practice Problem-Solving Strategy 21.1 Conservation of energy in charge interactions. An alpha particle (α), which...
To practice Problem-Solving Strategy 21.1 Conservation of energy in charge interactions. An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V . The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is initially at rest accelerates through a potential difference V = 100 V and enters into a region 0 < x < d, where there is a uniform magnetic field of magnitude B = 1.5 T with direction perpendicular to the plane of the paper and inward. Use the coordinate system shown in the figure to answer the following questions. (Gravitational force on the particle...
A charge q=-4.9nC and mass m=18.1picograms is accelerated from the rest through a potential difference of...
A charge q=-4.9nC and mass m=18.1picograms is accelerated from the rest through a potential difference of ΔV=173kV. It enters a region where a uniform B=66mT magnetic field is perpendicular to the velocity of the charge. Determine the radius of the path this charge will follow in the magnetic field( in meters).
A proton (mass mp), a deuteron (m=2mp,Q=e), and an alpha particle (m=4mp,Q=2e) are accelerated by the...
A proton (mass mp), a deuteron (m=2mp,Q=e), and an alpha particle (m=4mp,Q=2e) are accelerated by the same potential difference V and then enter a uniform magnetic field B⃗ , where they move in circular paths perpendicular to B⃗ . Determine the radius of the path for the deuteron in terms of that for the proton. Determine the radius of the path for the alpha particle in terms of that for the proton. Express your answers in terms of rp.
A negatively charged particle of mass 6.11 x 10-23 kg is accelerated from rest through an...
A negatively charged particle of mass 6.11 x 10-23 kg is accelerated from rest through an electric potential difference of 3.5 x 103 V. After this, it enters a magnetic field of strength 0.80 T and undergoes uniform circular motion with a radius of 25 cm. Find the speed and charge of the particle 2.How many excess electrons does the particle have?
A particle with charge +q is at the origin. A particle with charge -2q is at...
A particle with charge +q is at the origin. A particle with charge -2q is at x = 2.00 m on the x-axis. If q = 2.50 nC, for what finite, positive value of x (in m) is the electric potential zero? Round your answer to 3 decimal places. Your Answer:
An ion of mass m and charge q is accelerated by a potential difference of V...
An ion of mass m and charge q is accelerated by a potential difference of V and allowed to enter a magnetic field B. In the field it moves in a semi-circle, striking photographic plate at a distance x from the slit. Show that the mass of the ion is given by ?=(?^2??^2) /8?.