Question

5Kg of ice at -30C is added to 30 Kg at 80C. What is the temperature...

5Kg of ice at -30C is added to 30 Kg at 80C. What is the temperature of the mixture ? (specific heat of ice is 2100 J/KgC, specific heat of water is 4186 J/KgC and Latent heat of fusion is 33.5 x 10^4 J/Kg)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How many joules heat must be added to 2.0 kg of ice at a temperature of...
How many joules heat must be added to 2.0 kg of ice at a temperature of -30 °C to bring it to room temperature 20 °C? (Specific heat capacity of ice is 2100 J/kg °C). (Specific heat capacity of water is 4186 J/kg °C). (Latent heat of water-ice is 3.33x105 J/kg) Group of answer choices 126.52 kJ 959.44 kJ 4293.44 kJ 668.78 kJ
A 24 g block of ice is cooled to −63◦C. It is added to 572 g...
A 24 g block of ice is cooled to −63◦C. It is added to 572 g of water in a 98 g copper calorimeter at a temperature of 30◦C. Find the final temperature. The specific heat of copper is 387 J/kg ·◦C and of ice is 2090 J/kg ·◦C. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg·◦C. Answer in units of ◦C.
45 gg of steam at 100 ºC is mixed with 177 gg of ice at 0...
45 gg of steam at 100 ºC is mixed with 177 gg of ice at 0 ºC.   The latent heat of fusion of water is 33.5 × 104 J/kg, and the specific heat of water is 4186 J/kg∙K, the latent heat of vaporization of water is 22.6 × 105 J/kg. a)Determine the amount of heat absorbed by ice at 0 ºC to make water at 0 ºC. b)Determine the amount of heat released by steam at 100 ºC to make...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.
An ice cube of mass 0.041 kg and temperature -13 ∘C is heated until it is...
An ice cube of mass 0.041 kg and temperature -13 ∘C is heated until it is now fully melted and at a temperature of 11∘C now. What percentage of the total energy was used to melt the ice? (Assume that there is no heat exchange with any container or the environment.) The specific heat of ice is 2200 J/kg ∘C and the specific heat of water is 4186 J/kg ∘C. The latent heat of fusion of ice is 334000 J/kg...
I place an ice cube with a mass of 0.223 kg and a temperature of −35°C...
I place an ice cube with a mass of 0.223 kg and a temperature of −35°C is placed into an insulated aluminum container with a mass of 0.553 kg containing 0.452 kg of water. The water and the container are initially in thermal equilibrium at a temperature of 27°C. Assuming that no heat enters or leaves the system, what will the final temperature of the system be when it reaches equilibrium, and how much ice will be in the container...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
An insolated cup contains 1kg of water initially at 20 oC. 0.50 kg of ice, initially...
An insolated cup contains 1kg of water initially at 20 oC. 0.50 kg of ice, initially at 0 oC is added to the cup of water. The water and ice are allowed to come to thermal equilibrium. The specific heat of ice is 2000 J/kg oC, the specific heat of water 4186 J/kg oC, the latent heat of fusion of water is 33.5x104 J/kg. What is the final temperature of the water? (A) 0 oC I know the answer is...
A 0.033 kg glass (with c = 840 J/kg oC) contains 0.281 of lemonade which, due...
A 0.033 kg glass (with c = 840 J/kg oC) contains 0.281 of lemonade which, due to the sugar content, has a specific heat of 4,208 J/kg oC. After putting 0.049 kg of ice into the glass and allowing it to completely melt the final equilibrium temperature of the glass of lemonade is found to be 2.9 oC. intial temperature is 0. (a) Calculate the initial temperature of the lemonade and glass. oC Note the following data for ice/water: specific...