Question

I place an ice cube with a mass of 0.223 kg and a temperature of
−35**°**C is placed into an insulated aluminum
container with a mass of 0.553 kg containing 0.452 kg of water. The
water and the container are initially in thermal equilibrium at a
temperature of 27**°**C. Assuming that no heat enters
or leaves the system, what will the final temperature of the system
be when it reaches equilibrium, and how much ice will be in the
container when it reaches equilibrium? The specific heat of water
is 4186 J/K, the specific heat of aluminum is 902 J/K, and the
specific heat of ice is 2108 J/K, and the latent heat of fusion for
ice/water is 3.34×10^5 J/kg.

Answer #1

An ice cube of mass 0.041 kg and temperature -13 ∘C is heated
until it is now fully melted and at a temperature of 11∘C now. What
percentage of the total energy was used to melt the ice? (Assume
that there is no heat exchange with any container or the
environment.) The specific heat of ice is 2200 J/kg ∘C and the
specific heat of water is 4186 J/kg ∘C. The latent heat of fusion
of ice is 334000 J/kg...

You decide to put a 40.0 g ice cube at -10.0°C into a well
insulated coffee cup (of negligible heat capacity)
containing of water at 5.0°C. When equilibrium is
reached, how much of the ice will have melted? The specific heat of
ice is 2090 J/kg ∙ K, that of water is 4186 J/kg ∙ K, and the
latent heat of fusion of water is 33.5 × 104 J/kg.

A cube of ice is taken from the freezer at -6.5 ?C and placed in
a 85-g aluminum calorimeter filled with 300 g of water at room
temperature of 20.0 ?C. The final situation is observed to be all
water at 17.0 ?C. The specific heat of ice is 2100 J/kg?C?, the
specific heat of aluminum is 900 J/kg?C?, the specific heat of
water is is 4186 J/kg?C?, the heat of fusion of water is 333 kJ/Kg.
a)What was the...

A cube of ice is taken from the freezer at -5.5 ∘C and placed in
a 85-g aluminum calorimeter filled with 300 g of water at room
temperature of 20.0 ∘C. The final situation is observed to be all
water at 16.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the
specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of
water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg.
What was the...

A 0.0700 kg ice cube at −30.0°C is placed in 0.517 kg of 35.0°C
water in a very well insulated container. What is the final
temperature? in celsius ? The latent heat of fusion of water is
79.8 kcal/kg, the specific heat of ice is 0.50 kcal/(kg · °C), and
the specific heat of water is 1.00 kcal/(kg · °C).

A 25 g ice cube at -15.0oC is placed in 169 g of
water at 48.0oC. Find the final temperature of the
system when equilibrium is reached. Ignore the heat capacity of the
container and assume this is in a calorimeter, i.e. the system is
thermally insulated from the surroundings. Give your answer in
oC with 3 significant figures.
Specific heat of ice: 2.090 J/g K
Specific heat of water: 4.186 J/g K
Latent heat of fusion for water: 333...

A 16 g ice cube at -15.0oC is placed in 140 g of
water at 48.0oC. Find the final temperature of the
system when equilibrium is reached. Ignore the heat capacity of the
container and assume this is in a calorimeter, i.e. the system is
thermally insulated from the surroundings. Give your answer in
oC with 3 significant figures.
Specific heat of ice: 2.090 J/g K
Specific heat of water: 4.186 J/g K
Latent heat of fusion for water: 333...

( A = 18, B = 93). A (10.0+A) g ice cube at -15.0oC
is placed in (125+B) g of water at 48.0oC. Find the
final temperature of the system when equilibrium is reached. Ignore
the heat capacity of the container and assume this is in a
calorimeter, i.e. the system is thermally insulated from the
surroundings. Give your answer in oC with 3 significant
figures.
Specific heat of ice: 2.090 J/g K
Specific heat of water: 4.186 J/g K...

A = 13 B = 27
A (10.0+A) g ice cube at -15.0oC is placed in (125+B)
g of water at 48.0oC. Find the final temperature of the
system when equilibrium is reached. Ignore the heat capacity of the
container and assume this is in a calorimeter, i.e. the system is
thermally insulated from the surroundings. Give your answer
inoC with 3 significant figures.
Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186
J/g K Latent heat...

A cube of ice is taken from the freezer at -9.5 ∘C and placed in
a 95-g aluminum calorimeter filled with 320 g of water at room
temperature of 20.0 ∘C. The final situation is observed to be all
water at 15.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the
specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of
water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333
kJ/Kg.
What was the...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 12 minutes ago

asked 21 minutes ago

asked 35 minutes ago

asked 37 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago