Question

A 24 g block of ice is cooled to −63◦C. It is added to 572 g...

A 24 g block of ice is cooled to −63C. It is added to 572 g of water in a 98 g copper calorimeter at a temperature of 30C.

Find the final temperature. The specific heat of copper is 387 J/kg ·C and of ice is 2090 J/kg ·C. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg·C.

Answer in units of C.

Homework Answers

Answer #1

For the ice to reach 0 degrees, you will need

63 * 2090 * 0.024 J = 3160.08

The latent heat needed to melt the ice is 333 J / g.

So to melt the ice, you will need

333 * 24= 7992 J

Assume final temperature = x degC

Specific heat of water is 4.186 J / g degC.

So heat applied to ice will be x * 4.186 * 24

Total heat energy applied = 3160.08 + 7992 + 1004.64x

Heat from water = (30-x) * 4.18 * 572= 71728 - 2390.96x

Specific heat of copper is 0.387J / g degC.

Heat from copper = (30-x) * 0.387 * 98 = 1137.78- 37 .926x

Heat gained = heat loss

3160.08+ 7992 + 1004.64x = 71728 - 2390.96x + 1137.78- 37.926x

On solving we get

x =~ 25

So final temperature is 25 degC.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.
A 40 g block of ice is cooled to -78°C. and is then added to 610...
A 40 g block of ice is cooled to -78°C. and is then added to 610 g of water in an 80 g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. Remember that the ice must first warm to 0°C, melt, and then continue warming as water. The specific heat of ice is 0.500 cal/g ·°C = 2090 J/kg°C
A 40 g block of ice is cooled to -69°C. and is then added to 630...
A 40 g block of ice is cooled to -69°C. and is then added to 630 g of water in an 80 g copper calorimeter at a temperature of 27°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. Remember that the ice must first warm to 0°C, melt, and then continue warming as water. The specific heat of ice is 0.500 cal/g ·°C = 2090 J/kg°C.
A 40-g block of ice is cooled to −70°C and is then added to 570 g...
A 40-g block of ice is cooled to −70°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 22°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 40-g block of ice is cooled to −76°C and is then added to 570 g...
A 40-g block of ice is cooled to −76°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 40-g block of ice is cooled to −72°C and is then added to 590 g...
A 40-g block of ice is cooled to −72°C and is then added to 590 g of water in an 80-g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam cup containing 0.1 kg of ice at -15°C. Assuming that no heat escapes from the cup what is the final temperature of the metallic block? The specific heat of the metal is 480 J/kg ∙ K, specific heat of ice is 2090 J/kg ∙ K, the latent heat of fusion of water is 3.33 × 105 J/kg, and the specific heat of water is...
How much energy is required to change a 34 g ice cube from ice at −10◦C...
How much energy is required to change a 34 g ice cube from ice at −10◦C to steam at 119◦C? The specific heat of ice is 2090 J/kg · ◦ C, the specific heat of water is 4186 J/kg · ◦ C, the specific heat of stream is 2010 J/kg · ◦ C, the heat of fusion is 3.33 × 105 J/kg, and the heat of vaporization is 2.26 × 106 J/kg. Answer in units of J
An insulating cup contains water at 25 ∘C. 30 grams of ice at 0 ∘C is...
An insulating cup contains water at 25 ∘C. 30 grams of ice at 0 ∘C is placed in the water. The system comes to equilibrium with a final temperature of 14∘C. How much water in grams was in the cup before the ice was added? (specific heat of ice is 2090 J/(kg LaTeX: ^\circ∘C), specific heat of water is 4186 J/(kg LaTeX: ^\circ∘C), latent heat of the ice to water transition is 3.33 x10^5 J/kg)
How much energy is required to change a 23 g ice cube from ice at −...
How much energy is required to change a 23 g ice cube from ice at − 12 ◦ C to steam at 101 ◦ C? The specific heat of ice is 2090 J / kg · ◦ C and of water 4186 J / kg · ◦ C. The latent heat of fusion of water is 3 . 33 × 10^5 J / kg, its latent heat of vaporization is 2 . 26 × 10^6 J / kg, and the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT