Question

A 200g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g...

A 200g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. a) find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kj/kg K) b) A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? c) would your answer in part b be different if both pieces of ice were added at the same time? (specific heat of aluminum is 0.9 kj/kg K and water is 4.18 kj/kg K)

Homework Answers

Answer #1

Here,

a) let the final temperature of the system is T

heat needed to melt all the ice

Q = 100 * 334 + 100 * 2 * 20 = 37400 J

heat lost by Al and water = 200 * 0.9 * 20 + 500 * 4.186 * 20

heat lost by Al and water = 45460 J

hence , all the ice will melt

37400 + 100 * 4.186 * (T - 0) = 200 * 0.90 * (20 - T) + 500* 4.186 * (20 - T)

solving for T

T = 3 degree C

the final temperature is 30 C

b) let the mass of ice remains is x

heat lost = heat gain by ice

45460 = 300 * 2 * (20) + (300 - x) * 334

solving for x

x = 199.2 gm

the mass of ice remaining is 199.2 gm

c) no still the answer will remain the same

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. - Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) - A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? - Would your answer...
A 192-g aluminum calorimeter contains 606 g of water at 18° C. A 98-g piece of...
A 192-g aluminum calorimeter contains 606 g of water at 18° C. A 98-g piece of ice cooled to -18° C is placed in the calorimeter. (Assume that the specific heat of ice is always 2.02 kJ/kg · K.)
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A...
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A 170-g piece of metal, initially at 277°C, is added to the calorimeter. The final temperature at equilibrium is 32°C. Assume there is no external heat exchange. The specific heats of aluminum and water are 910 J/kg·K and 4190 J/kg·K, respectively. The specific heat of the metal is closest to: a) 270 J/kg·K. b) 240 J/kg·K. c) 330 J/kg·K. d) 390 J/kg·K. e) 360 J/kg·K.
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The density of water is 1 kg/L, and the specific heat of water at room temperature is c = 4.18 kJ/kg·°C. The specific heat of ice at about 0°C is c = 2.11 kJ/kg·°C. The melting temperature and the heat of fusion of ice at 1 atm are 0°C and 333.7 kJ/kg. A) Determine how much ice needs to be added to the water, in...
A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal...
A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blocks are placed in the water. One is a 50 g piece of copper at 82°C. The other sample has a mass of 78 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample.
You place 20g of ice initially at -10 degrees celcius and 200g of an unknown substance...
You place 20g of ice initially at -10 degrees celcius and 200g of an unknown substance initially at 90 degrees celcius together in an insukated container. You find that the final temperature of the system is 34.6 degrees celcius and note that the unknown substance did not change phase. Given that the specific heat of ice is 2.04 kJ/kg•K, the specific heat of liquid water is 4.18 kJ/kg•K, and the heat of fusion of water is 334 kJ/kg, find the...
A calorimeter contains 82.4 grams of water at 20.9 °C. A 156 -gram piece of an...
A calorimeter contains 82.4 grams of water at 20.9 °C. A 156 -gram piece of an unknown metal is heated to 81.9 °C and dropped into the water. The entire system eventually reaches 26.6 °C. Assuming all of the energy gained by the water comes from the cooling of the metal—no energy loss to the calorimeter or the surroundings—calculate the specific heat of the metal. The specific heat of water is 4.18 J/g · °C _____J/g · °C
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at...
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at 40∘C. A 200-g iron block at 0∘C is added to the water. Assume the specific heat of iron is 450 J/kg⋅∘C, the specific heat of water 4180 J/kg⋅∘C and the specific heat of aluminum is 900 J/kg⋅∘C . 1Determine the final equilibrium temperature.    2.Determine the change in thermal energy of the aluminum 3.Determine the change in thermal energy of the water. 4. Determine...
When a 310-g piece of iron at 160 ∘C is placed in a 95-g aluminum calorimeter...
When a 310-g piece of iron at 160 ∘C is placed in a 95-g aluminum calorimeter cup containing 250 g of liquid at 10∘C, the final temperature is observed to be 36 ∘C. The value of specific heat for iron is 450 J/kg⋅C∘, and for aluminum is 900 J/kg⋅C∘. Determine the specific heat of the liquid.
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0...
An insulated Thermos contains 115 g of water at 78.7 ˚C. You put in a 10.0 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT