Question

A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at...

A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at 40∘C. A 200-g iron block at 0∘C is added to the water. Assume the specific heat of iron is 450 J/kg⋅∘C, the specific heat of water 4180 J/kg⋅∘C and the specific heat of aluminum is 900 J/kg⋅∘C

.

1Determine the final equilibrium temperature.    2.Determine the change in thermal energy of the aluminum

3.Determine the change in thermal energy of the water. 4. Determine the change in thermal energy of the iron.

show work please

Homework Answers

Answer #1

1.

ma = mass of aluminium = 500 g = 0.5 kg

mw = mass of water = 300 g = 0.3 kg

mi = mass of iron = 200 g = 0.2 kg

Tawi = initial temperature of aluminium and water = 40

Tii = initial temperature of iron = 0

T = final equilibrium temperature

ci = specific heat of iron = 450

cw = specific heat of water = 4180

ca = specific heat of aluminium = 900

using conservation of heat

Heat lost by aluminium and water = Heat gained by iron

mw cw (Tawi - T) + ma ca (Tawi - T) = mi ci (T - Tii)

(0.3) (4180) (40 - T) + (0.5) (900) (40 - T) = (0.2) (450) (T - 0)

T = 38 C

2.

Qa = change in thermal energy of aluminium = ma ca (Tawi - T) = (0.5) (900) (40 - 38) = 900 J

3.

Qw = change in thermal energy of water = mw cw (Tawi - T) = (0.3) (4180) (40 - 38) = 2508 J

4.

Qi = change in thermal energy of iron = mi ci (T - Tii ) = (0.2) (450) (38 - 0) = 3420 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of...
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of water at 293.15 K in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 25.00 °C. What is the approximate mass of the water? The specific heat of water is 4.18 J/g . °C. The specific heat of aluminum is 0.897 J/g . °C.
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in...
A 35.0-g cube of ice, initially at 0.0°C, is dropped into 180.0 g of water in an 70.0-g aluminum container, both initially at 35.0°C. What is the final equilibrium temperature? (Specific heat for aluminum is 900 J/kg⋅°C, the specific heat of water is 4 186 J/kg⋅°C, and Lf = 3.33 × 105 J/kg.) 26.4 °C 17.6 °C 8.79 °C 35.1 °C 30.8 ° C
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
A Styrofoam cup holds 0.297 kg of water at 23.5°C. Find the final equilibrium temperature (in...
A Styrofoam cup holds 0.297 kg of water at 23.5°C. Find the final equilibrium temperature (in degrees Celsius) after a 0.153 kg block of aluminum at 85.1°C is placed in the water. Neglect any thermal energy transfer with the Styrofoam cup. The specific heats of water and aluminum are cwater = 4186 J (kg · °C) and cAl = 900 J (kg · °C) . °C
When a 310-g piece of iron at 160 ∘C is placed in a 95-g aluminum calorimeter...
When a 310-g piece of iron at 160 ∘C is placed in a 95-g aluminum calorimeter cup containing 250 g of liquid at 10∘C, the final temperature is observed to be 36 ∘C. The value of specific heat for iron is 450 J/kg⋅C∘, and for aluminum is 900 J/kg⋅C∘. Determine the specific heat of the liquid.
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. - Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) - A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? - Would your answer...
When a 290-g piece of iron at 180 ∘C is placed in a 95-g aluminum calorimeter...
When a 290-g piece of iron at 180 ∘C is placed in a 95-g aluminum calorimeter cup containing 250 g of liquid at 10∘C, the final temperature is observed to be 34 ∘C. The value of specific heat for iron is 450 J/kg⋅C∘, and for aluminum is 900 J/kg⋅C∘. Determine the specific heat of the liquid. Express your answer using two significant figures.
An aluminum electric tea kettle with a mass of 500 g is heated with a 500-W...
An aluminum electric tea kettle with a mass of 500 g is heated with a 500-W heating coil. How long will it take to heat up 1.0 kg of water from 18°C to 98°C in the tea kettle? The specific heat of aluminum is 900 J/kg ? K and that of water is 4186 J/kg ? K.
(a) A student drops two metallic objects into a 120 g steel container holding 150 g...
(a) A student drops two metallic objects into a 120 g steel container holding 150 g of water at 25◦C. One object is a 200 g cube of copper that is initially at 85◦C, and the other is a chunk of aluminum that is initially at 5◦C. To the student’s surprise, the water reaches a final temperature of 25◦C, precisely where it started. What is the mass of the aluminum chunk? Specific heats of water, steel, copper, and aluminum are...
Q 11: One container holds 0.10 kg of water at 75 ∘C and is warmed to...
Q 11: One container holds 0.10 kg of water at 75 ∘C and is warmed to 95 ∘C by heating from contact with the other container. The other container, also holding 0.10 kg of water, cools from 35 ∘C to 15 ∘C. Specific heat of water is 4180 J/kg⋅∘C. Part A: Estimate the total change in entropy of two containers of water using the actual temperatures to determine the heat transferred to each container and the average temperatures to determine...