Question

A 192-g aluminum calorimeter contains 606 g of water at 18° C. A 98-g piece of...

A 192-g aluminum calorimeter contains 606 g of water at 18° C. A 98-g piece of ice cooled to -18° C is placed in the calorimeter. (Assume that the specific heat of ice is always 2.02 kJ/kg · K.)

Homework Answers

Answer #1

Q= m x Cp x DT

Heat needed to reach the melting point:

Q= 0.098kg x 2.02 kJ/kg.K x 18 = 3.56328 kJ

Now the fusion energy for the ice:

Q= 98g x 334 J/g = 32732 J= 32.732 kJ

Total energy= 36.29528 kJ

The temperature of the water at 18ºC will decrease:

36.29528= 606g x 4.186 J/gºC x DT x1kJ/1000J -----> DT= 14.31 ºC

Final temperature of the hot water= 18-14.31 = 3.69 ºC

The cool water need to increase the temperature until the final temperature, and the hot water will low it´s temperature a little bit:

606g x 4.186 J/gºC x (3.69 -Tf) = 98g x 4.186 J/gºC x (Tf-0)

Tf= 3.18 ºC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. - Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) - A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? - Would your answer...
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A...
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A 170-g piece of metal, initially at 277°C, is added to the calorimeter. The final temperature at equilibrium is 32°C. Assume there is no external heat exchange. The specific heats of aluminum and water are 910 J/kg·K and 4190 J/kg·K, respectively. The specific heat of the metal is closest to: a) 270 J/kg·K. b) 240 J/kg·K. c) 330 J/kg·K. d) 390 J/kg·K. e) 360 J/kg·K.
When a 290-g piece of iron at 180 ∘C is placed in a 95-g aluminum calorimeter...
When a 290-g piece of iron at 180 ∘C is placed in a 95-g aluminum calorimeter cup containing 250 g of liquid at 10∘C, the final temperature is observed to be 34 ∘C. The value of specific heat for iron is 450 J/kg⋅C∘, and for aluminum is 900 J/kg⋅C∘. Determine the specific heat of the liquid. Express your answer using two significant figures.
A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal...
A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blocks are placed in the water. One is a 50 g piece of copper at 82°C. The other sample has a mass of 78 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample.
When a 290-g piece of iron at 170 ∘C is placed in a 95-gg aluminum calorimeter...
When a 290-g piece of iron at 170 ∘C is placed in a 95-gg aluminum calorimeter cup containing 250 g of liquid at 10∘C, the final temperature is observed to be 32 ∘C. The value of specific heat for iron is 450 J/kg⋅C∘, and for aluminum is 900 J/kg⋅C∘ Part A Determine the specific heat of the liquid. Express your answer using two significant figures.
A 700g piece of copper at 100 degrees centigrade is placed into a 80g aluminum calorimeter...
A 700g piece of copper at 100 degrees centigrade is placed into a 80g aluminum calorimeter of specific heat 0.2cal/gc. the calorimeter contains 40g of water at 25 degrees C. the final temperature is 30C. calculate the specific heat of copper.
A 102 g piece of ice at 0.0°C is placed in an insulated calorimeter of negligible...
A 102 g piece of ice at 0.0°C is placed in an insulated calorimeter of negligible heat capacity containing 100 g of water at 100°C. Find the entropy change of the universe for this process? 135 J/K 134 J/K is wrong,
A calorimeter contains 82.4 grams of water at 20.9 °C. A 156 -gram piece of an...
A calorimeter contains 82.4 grams of water at 20.9 °C. A 156 -gram piece of an unknown metal is heated to 81.9 °C and dropped into the water. The entire system eventually reaches 26.6 °C. Assuming all of the energy gained by the water comes from the cooling of the metal—no energy loss to the calorimeter or the surroundings—calculate the specific heat of the metal. The specific heat of water is 4.18 J/g · °C _____J/g · °C
A 485.4-g sample of an element at 192°C is dropped into an ice–water mixture; 117.0 g...
A 485.4-g sample of an element at 192°C is dropped into an ice–water mixture; 117.0 g of ice melts and an ice–water mixture remains. Calculate the specific heat of the element. ΔHfusion = 6.02 kJ/mol (for liquid water at 0°C). Specific heat =______ J/g∙°C
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...