Question

An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A...

An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A 170-g piece of metal, initially at 277°C, is added to the calorimeter. The final temperature at equilibrium is 32°C. Assume there is no external heat exchange. The specific heats of aluminum and water are 910 J/kg·K and 4190 J/kg·K, respectively. The specific heat of the metal is closest to:

a) 270 J/kg·K.
b) 240 J/kg·K.
c) 330 J/kg·K.
d) 390 J/kg·K.
e) 360 J/kg·K.

Homework Answers

Answer #1

Using energy Conservation:

Energy released by metal = Energy gained by water + energy gained by Aluminum

Q1 = Q2 + Q3

Q1 = Energy released by metal = M*C*dT

M = mass of metal = 170 gm = 0.17 kg

dT = Ti - Tf = 277 - 32 = 245 C

C = Specific heat of metal = ?

Q2 = Energy released by water = Mw*CW*dT1

Mw = 280 gm = 0.28 kg

Cw = 4190 J/kg-C and dT1 = Tf - Ti = 32 - 20 = 12 C

Q3 = Energy released by aluminum = Ma*Ca*dT1

Ma = 100 gm = 0.1 kg

Ca = 910 J/kg-C and dT1 = Tf - Ti = 32 - 20 = 12 C

Now using these values:

Q1 = Q2 + Q3

0.17*C*245 = 0.28*4190*12 + 0.1*910*12

C = (0.28*4190*12 + 0.1*910*12)/(0.17*245)

C = 364.2 J/kg-K

Correct option is E.

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You drop a 297-g silver figure of a polar bear into the 205-g aluminum cup of...
You drop a 297-g silver figure of a polar bear into the 205-g aluminum cup of a well-insulated calorimeter containing 277 g of liquid water at 24.5°C. The bear\'s initial temperature is 95.5°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
A 285 g285 g silver figure of a polar bear is dropped into the 215 g215...
A 285 g285 g silver figure of a polar bear is dropped into the 215 g215 g aluminum cup of a well‑insulated calorimeter containing 277 g277 g of liquid water at 23.3∘C.23.3∘C. The bear's initial temperature is 95.3∘C.95.3∘C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K),234 J/(kg·K), 910 J/(kg·K),910 J/(kg·K), and 4190 J/(kg·K).
A 299 g silver figure of a polar bear is dropped into the 211 g aluminum...
A 299 g silver figure of a polar bear is dropped into the 211 g aluminum cup of a well‑insulated calorimeter containing 259 g of liquid water at 21.5∘C. The bear's initial temperature is 96.5∘C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
A 281 g silver figure of a polar bear is dropped into the 219 g aluminum...
A 281 g silver figure of a polar bear is dropped into the 219 g aluminum cup of a well‑insulated calorimeter containing 269 g of liquid water at 21.3∘C. The bear's initial temperature is 99.5∘C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
You drop a 291-g silver figure of a polar bear into the 247-g aluminum cup of...
You drop a 291-g silver figure of a polar bear into the 247-g aluminum cup of a well-insulated calorimeter containing 261 g of liquid water at 21.9°C. The bear\'s initial temperature is 97.9°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
You drop a 297-g silver figure of a polar bear into the 247-g aluminum cup of...
You drop a 297-g silver figure of a polar bear into the 247-g aluminum cup of a well-insulated calorimeter containing 259 g of liquid water at 22.3°C. The bear\'s initial temperature is 98.5°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
You drop a 285-g silver figure of a polar bear into the 241-g aluminum cup of...
You drop a 285-g silver figure of a polar bear into the 241-g aluminum cup of a well-insulated calorimeter containing 263 g of liquid water at 23.9°C. The bear\'s initial temperature is 95.9°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. - Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) - A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? - Would your answer...
A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal...
A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blocks are placed in the water. One is a 50 g piece of copper at 82°C. The other sample has a mass of 78 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample.
In an experiment, 100 g of aluminum (with a specific heat of 900 J/kg·K) at 79.0°C...
In an experiment, 100 g of aluminum (with a specific heat of 900 J/kg·K) at 79.0°C is mixed with 80.0 g of water (with a specific heat of 4186 J/kg·K) at 43.0°C, with the mixture thermally isolated. (a) What is the equilibrium temperature? What are the entropy changes of (b) the aluminum, (c) the water, and (d) the aluminum-water system?