Question

A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...

A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 189 Ω. The magnetic field is now increased at a constant rate by a factor of 2.70 in 27.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.

Homework Answers

Answer #1

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular conducting loop of radius 23.0 cm is located in a region of the homogeneous...
A circular conducting loop of radius 23.0 cm is located in a region of the homogeneous magnetic field of magnitude 0.900 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 229 Ω. The magnetic field is now increased at a constant rate by a factor of 2.60 in 29.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.500 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 123 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 11.0s. c) With the magnetic field held constant at its new value of 1.10 T, calculate the magnitude of the average induced voltage...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 211 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 17.0s. 1.) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2.) Calculate the magnitude of...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 109 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 15.0s. 1) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2) Calculate the magnitude of...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 285 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 23.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Calculate the magnitude of the current...
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 295 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 21.0s. a) Calculate the magnitude of the current induced in the loop while the field is increasing. b) With the magnetic field held...
Inducing Voltage and Current A circular conducting loop of radius 21.0 cm is located in a...
Inducing Voltage and Current A circular conducting loop of radius 21.0 cm is located in a region of homogeneous magnetic field of magnitude 0.900 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 137 Ω. The magnetic field is now increased at a constant rate by a factor of 2.60 in 13.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Calculate the...
In an electromagnetic induction experiment, you are keeping a conducting circular loop of 50 cm radius...
In an electromagnetic induction experiment, you are keeping a conducting circular loop of 50 cm radius placed perpendicular to a magnetic field of 5 T and magnetic field changed from maximum to zero within 0.50 s. Is law of electromagnetic induction applied here? Justify your answer. How can you evaluate the magnitude of induced emf in the coil? When the circular coil having a diameter of 20 cm is used in above case, evaluate the induced emf? Compare your results...
A circular loop in the plane of a paper lies in a 0.75 TT magnetic field...
A circular loop in the plane of a paper lies in a 0.75 TT magnetic field pointing into the paper. The loop's diameter changes from 20.5 cmcm to 6.4 cmcm in 0.46 ss . What is the magnitude of the average induced emf? What is the average induced current if the coil resistance is 4.3 Ω?
A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic...
A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic field of 0.1 T. If the magnetic field strength changes to a value of 0.5 T in 0.5 s, calculate the induced current in the loop if it is in series with a 20 ohm resistor. 5.7 × 10–2 A 1.2 × 10–2 A 2.8 × 10–3 A 6.0 × 10–4 A 1.1 A
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT