Question

A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic...

A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 295 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 21.0s.

a) Calculate the magnitude of the current induced in the loop while the field is increasing.

b) With the magnetic field held constant at its new value of 1.54 T, calculate the magnitude of the average induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 1.70 s.

Homework Answers

Answer #1

we have Faradaay law of induction

now incresed magnetic field is 2.2*0.7=1.54 T hence

  

And  

We have from ohms law

a) hence magnitude of current induced is 0.0266mA.

b) here the change i area

time interval

now we have

HENCE MAGNITUDE OF AVERAGE INDUCED VOLTAGE =0.178 V.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 109 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 15.0s. 1) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2) Calculate the magnitude of...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 285 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 23.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Calculate the magnitude of the current...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 211 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 17.0s. 1.) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2.) Calculate the magnitude of...
Inducing Voltage and Current A circular conducting loop of radius 21.0 cm is located in a...
Inducing Voltage and Current A circular conducting loop of radius 21.0 cm is located in a region of homogeneous magnetic field of magnitude 0.900 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 137 Ω. The magnetic field is now increased at a constant rate by a factor of 2.60 in 13.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Calculate the...
A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic...
A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic field of 0.1 T. If the magnetic field strength changes to a value of 0.5 T in 0.5 s, calculate the induced current in the loop if it is in series with a 20 ohm resistor. 5.7 × 10–2 A 1.2 × 10–2 A 2.8 × 10–3 A 6.0 × 10–4 A 1.1 A
In an electromagnetic induction experiment, you are keeping a conducting circular loop of 50 cm radius...
In an electromagnetic induction experiment, you are keeping a conducting circular loop of 50 cm radius placed perpendicular to a magnetic field of 5 T and magnetic field changed from maximum to zero within 0.50 s. Is law of electromagnetic induction applied here? Justify your answer. How can you evaluate the magnitude of induced emf in the coil? When the circular coil having a diameter of 20 cm is used in above case, evaluate the induced emf? Compare your results...
A circular loop in the plane of the paper lies in a 0.75 T magnetic field...
A circular loop in the plane of the paper lies in a 0.75 T magnetic field pointing into the paper. The loop’s diameter is changed from 20.0 cm to 6.0 cm in 0.50 s. Determine the direction of the induced current and justify your answer. Determine the magnitude of the average induced emf. If the coil resistance is 2.5 Ω, what is the average induced current?
A conducting loop has a magnetic flux through it. If the loop is rotated will the...
A conducting loop has a magnetic flux through it. If the loop is rotated will the flux through the loop change? Yes, if the rotation axis is not parallel to the magnetic field Only of the rotation axis is parallel to the magnetic field Yes, for any rotation axis Not enough information 2. A bar magnet is held stationary inside a coil of wire that is connected to a meter. What can be said about the current in the coil?...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field...
A circular loop with 50 coils is pulled (to the right) from an external magnetic field of 0.8 T into the page. At t=0 the right edge of the loop is at the right edge of the magnetic field. After 0.250 seconds the loop has moved completely out of the magnetic field. Diameter of the coil is 10 cm Find the rate of change in flux through one loop as the loop if the loop is pulled out of the...
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10...
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10 cm made with wire of diameter 3.4 mm and resistivity 2.07 × 10-8?·m. The magnetic field increases as a function of time, with magnitude B = (0.79 t) T/s a) What is the magnitude of the emf induced in the loop? b) What is the value of the current through the loop? c) At what rate does energy appear as thermal energy in the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT