Question

A circular conducting loop of radius 25.0 cm is located in a
region of homogeneous magnetic field of magnitude 0.700 T pointing
perpendicular to the plane of the loop. The loop is connected in
series with a resistor of 295 Ω. The magnetic field is now
increased at a constant rate by a factor of 2.20 in
21.0s.

a) Calculate the magnitude of the current induced in the loop while the field is increasing.

b) With the magnetic field held constant at its new value of 1.54 T, calculate the magnitude of the average induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 1.70 s.

Answer #1

we have Faradaay law of induction

now incresed magnetic field is 2.2*0.7=1.54 T hence

And

We have from ohms law

a) hence magnitude of current induced is 0.0266mA.

b) here the change i area

time interval

now we have

HENCE MAGNITUDE OF AVERAGE INDUCED VOLTAGE =0.178 V.

A circular conducting loop of radius 31.0 cm is located in a
region of homogeneous magnetic field of magnitude 0.100 T pointing
perpendicular to the plane of the loop. The loop is connected in
series with a resistor of 211 Ω. The magnetic field is now
increased at a constant rate by a factor of 2.80 in 17.0s.
1.) Calculate the magnitude of the induced emf in the loop while
the magnetic field is increasing.
2.) Calculate the magnitude of...

A circular loop in the plane of the paper lies in a 0.75 T
magnetic field pointing into the paper. The loop’s diameter is
changed from 20.0 cm to 6.0 cm in 0.50 s.
Determine the direction of the induced current and justify your
answer.
Determine the magnitude of the average induced emf.
If the coil resistance is 2.5 Ω, what is the average induced
current?

A time-varying magnetic field is perpendicular to the plane of a
circular loop of diameter 10 cm made with wire of diameter 3.4 mm
and resistivity 2.07 × 10-8?·m.
The magnetic field increases as a function of time, with magnitude
B = (0.79 t) T/s
a) What is the magnitude of the emf induced in the loop?
b) What is the value of the current through the loop?
c) At what rate does energy appear as thermal energy in the...

6: A single-turn circular loop of wire rests flat on this page.
A magnetic field is directed perpendicular to this page pointing
outwards (towards you). When the magnetic field strength increases
from 3.2 T to 6.5 T in 0.026 seconds, a 1 V emf is induced in the
coil.
a) Calculate the radius of the loop.
b) State the direction of the induced current and briefly
explain how you arrived at your answer.

A circular loop in the plane of a paper lies in a 0.75 TT
magnetic field pointing into the paper. The loop's diameter changes
from 20.5 cmcm to 6.4 cmcm in 0.46 ss .
What is the magnitude of the average induced emf?
What is the average induced current if the coil resistance is
4.3 Ω?

A circular loop in the plane of the paper lies in a 0.78 T
magnetic field pointing into the paper.
A) What is the magnitude of the average induced emf? Answer in
V.
B) If the coil resistance is 4.3 ohm , what is the average
induced current? Answer in A

A circular loop in the plane of the paper lies in a 0.76 T
magnetic field pointing into the paper. If the loop's diameter
changes from 20.2 cm to 9.6 cm in
0.56 s. What is the direction of the induced current? What is
the magnitude of the average induced emf?

A circular loop in the plane of the paper lies in a 0.38 T
magnetic field pointing into the paper.
Part A: If the loop's diameter changes from 19.4 cm to 5.8 cm in
0.49 s , what is the direction of the induced current?
Part B: What is the magnitude of the average induced emf?

A circular coil of 312 winds of wire (radius = 7.0 cm,
resistance = 7.4 Ω) is placed in a uniform magnetic field that is
perpendicular to the plane of the loop. The magnitude of the field
changes with time according to ? = 90sin(7?) mT, where ? is
measured in seconds. Determine the magnitude of the current induced
in the loop at ?=?/7 s.

A 37-turn circular coil of
radius 4.60 cm and resistance 1.00 Ω is placed
in a magnetic field directed perpendicular to the plane of the
coil. The magnitude of the magnetic field varies in time according
to the expression B = 0.010
0t + 0.040 0t2,
where B is in teslas and t is in
seconds. Calculate the induced emf in the coil
at t = 4.20 s.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 3 minutes ago

asked 3 minutes ago

asked 8 minutes ago

asked 10 minutes ago

asked 10 minutes ago

asked 10 minutes ago

asked 13 minutes ago

asked 13 minutes ago

asked 14 minutes ago

asked 14 minutes ago

asked 14 minutes ago

asked 14 minutes ago