Question

A circular loop in the plane of a paper lies in a 0.75 TT magnetic field pointing into the paper. The loop's diameter changes from 20.5 cmcm to 6.4 cmcm in 0.46 ss .

What is the magnitude of the average induced emf?

What is the average induced current if the coil resistance is 4.3 Ω?

Answer #1

A circular loop in the plane of the paper lies in a 0.75 T
magnetic field pointing into the paper. The loop’s diameter is
changed from 20.0 cm to 6.0 cm in 0.50 s.
Determine the direction of the induced current and justify your
answer.
Determine the magnitude of the average induced emf.
If the coil resistance is 2.5 Ω, what is the average induced
current?

A circular loop in the plane of the paper lies in a 0.78 T
magnetic field pointing into the paper.
A) What is the magnitude of the average induced emf? Answer in
V.
B) If the coil resistance is 4.3 ohm , what is the average
induced current? Answer in A

A circular loop in the plane of the paper lies in a 0.76 T
magnetic field pointing into the paper. If the loop's diameter
changes from 20.2 cm to 9.6 cm in
0.56 s. What is the direction of the induced current? What is
the magnitude of the average induced emf?

A circular loop in the plane of the paper lies in a 0.38 T
magnetic field pointing into the paper.
Part A: If the loop's diameter changes from 19.4 cm to 5.8 cm in
0.49 s , what is the direction of the induced current?
Part B: What is the magnitude of the average induced emf?

A circular loop of wire with area 0.020 m2m2 lies in the
x-y plane. Initially there's a magnetic field of 3.6 TT in
the -z-direction. The field remains constant for 11 ss ,
then decreases gradually to zero in 11 ss , and then remains zero
for 11 ss .
Part A: Find the magnitude of the induced emf in the loop for
the first 11 ss interval.
Express your answer to two significant figures and include the
appropriate units....

A time-varying magnetic field is perpendicular to the plane of a
circular loop of diameter 10 cm made with wire of diameter 3.4 mm
and resistivity 2.07 × 10-8?·m.
The magnetic field increases as a function of time, with magnitude
B = (0.79 t) T/s
a) What is the magnitude of the emf induced in the loop?
b) What is the value of the current through the loop?
c) At what rate does energy appear as thermal energy in the...

A fixed 16.9-cm diameter wire coil is perpendicular to a
magnetic field 0.44 TT pointing up. In 0.28 s, the field is changed
to 0.30 TT pointing down.
What is the average induced emf in the coil?

A circular wire loop of radius rr = 16 cmcm is immersed in a
uniform magnetic field BB = 0.375 TT with its plane normal to the
direction of the field.
If the field magnitude then decreases at a constant rate of
−1.2×10−2 T/sT/s , at what rate should rr increase so
that the induced emf within the loop is zero?

A circular conducting loop of radius 31.0 cm is located in a
region of homogeneous magnetic field of magnitude 0.300 T pointing
perpendicular to the plane of the loop. The loop is connected in
series with a resistor of 109 Ω. The magnetic field is now
increased at a constant rate by a factor of 2.40 in 15.0s.
1) Calculate the magnitude of the induced emf in the loop while
the magnetic field is increasing.
2) Calculate the magnitude of...

A circular conducting loop of radius 31.0 cm is located in a
region of homogeneous magnetic field of magnitude 0.100 T pointing
perpendicular to the plane of the loop. The loop is connected in
series with a resistor of 211 Ω. The magnetic field is now
increased at a constant rate by a factor of 2.80 in 17.0s.
1.) Calculate the magnitude of the induced emf in the loop while
the magnetic field is increasing.
2.) Calculate the magnitude of...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 8 minutes ago

asked 9 minutes ago

asked 12 minutes ago

asked 12 minutes ago

asked 23 minutes ago

asked 24 minutes ago

asked 29 minutes ago

asked 37 minutes ago

asked 37 minutes ago

asked 39 minutes ago

asked 43 minutes ago

asked 43 minutes ago