Question

A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic...

A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic field of 0.1 T. If the magnetic field strength changes to a value of 0.5 T in 0.5 s, calculate the induced current in the loop if it is in series with a 20 ohm resistor.

5.7 × 10–2 A

1.2 × 10–2 A

2.8 × 10–3 A

6.0 × 10–4 A

1.1 A

Homework Answers

Answer #1

This is third option.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 189 Ω. The magnetic field is now increased at a constant rate by a factor of 2.70 in 27.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a...
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 10.9 Ω resistor to create a closed circuit. During a time interval of 0.141 s, the magnetic field strength decreases uniformly from 0.539 T to zero. Find the energy ? in millijoules that is dissipated in the resistor during this time interval.
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 295 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 21.0s. a) Calculate the magnitude of the current induced in the loop while the field is increasing. b) With the magnetic field held...
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.500 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 123 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 11.0s. c) With the magnetic field held constant at its new value of 1.10 T, calculate the magnitude of the average induced voltage...
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a...
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 11.9 Ω resistor to create a closed circuit. During a time interval of 0.161 s, the magnetic field strength decreases uniformly from 0.673 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy:____________ mJ
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 109 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 15.0s. 1) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2) Calculate the magnitude of...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 285 Ω. The magnetic field is now increased at a constant rate by a factor of 2.40 in 23.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Calculate the magnitude of the current...
A circular conducting loop of radius 23.0 cm is located in a region of the homogeneous...
A circular conducting loop of radius 23.0 cm is located in a region of the homogeneous magnetic field of magnitude 0.900 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 229 Ω. The magnetic field is now increased at a constant rate by a factor of 2.60 in 29.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 211 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 17.0s. 1.) Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2.) Calculate the magnitude of...
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If...
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If the field is directed perpendicular to the plane of the loop and the magnetic flux through the loop is 7.40 ✕ 10−3 T · m2, what is the strength of the magnetic field? T (b) If the magnetic field is directed parallel to the plane of the loop, what is the magnetic flux through the loop? T · m2