Question

You are testing a new amusement park roller coaster with an empty car with a mass...

You are testing a new amusement park roller coaster with an empty car with a mass of 120 kg . One part of the track is a vertical loop with a radius of 12.0 m . At the bottom of the loop (point A) the car has a speed of 25.0 m/s and at the top of the loop (point B) it has speed of 8.00 m/s .

As the car rolls from point A to point B, how much work is done by friction?

Use 9.81 m/s2 for the acceleration due to gravity.

Homework Answers

Answer #1

Use work energy theorem where work done by friction and gravity is equal to change in kinetic energy of the rollercoaster.

***********************************************************************************************
This concludes the answers. If there is any mistake or omission, let me know immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
on a roller coaster ride at an amusement park on MARS, a car travels from 7.6...
on a roller coaster ride at an amusement park on MARS, a car travels from 7.6 m/s to 56 m/s in 3.0 seconds? a. what is the car's acceleration? b. how much distance did the car travel in 3.0 seconds? c. if the car continued this acceleration, how fast would it be traveling after 150 m?
A roller coaster car of mass 900 kg when released from rest at point A (height...
A roller coaster car of mass 900 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 15.0 m. The car never loses contact with the track. Draw below a free body diagram for the car at the bottom of the loop. If the speed of the car at the bottom of the loop (point B) is 25 m/s, what is the normal force at that point?...
You are upgrading an amusement park ride by adding a circular loop to an existing roller...
You are upgrading an amusement park ride by adding a circular loop to an existing roller coaster ride. The first hill for the existing roller coaster is 55 m tall, and you are to build, right at the bottom of this hill, the tallest loop possible without having the cars fall out of the track or the passengers fall out of the cars. The roller coaster starts from rest at the top of the hill. What is the maximum radius...
A roller coaster car with a mass of 920.5 kg starts from rest at the top...
A roller coaster car with a mass of 920.5 kg starts from rest at the top of a 47.1 m hill labeled h1. The car travels to the bottom of the hill and continues up the next hill that is 12.5 m high and labeled h2. a.) Ignoring friction, what is the speed of the roller coaster car at the bottom of the hill? b.) Ignoring friction, what is the speed of the roller coaster car at the top of...
A roller coaster car of mass 800 kg when released from rest at point A (height...
A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. Draw below a free body diagram for the car at the top of the loop. If the speed of the car at the top of the loop (point C) is 17 m/s, what is the normal force at that point?...
A roller-coaster car (mass = 988 kg including passengers) is about to roll down a track....
A roller-coaster car (mass = 988 kg including passengers) is about to roll down a track. The diameter of the circular loop is 17.2 m and the car starts out from rest 41.0 m above the lowest point of the track. Ignore friction and air resistance. where x = 41.0 m and y = 17.2 ma) a)What is the force exerted on the car by the track at the top of the loop? ___kN b)From what minimum height above the...
A roller-coaster car descends 38 m from its highest point to its lowest. Suppose that the...
A roller-coaster car descends 38 m from its highest point to its lowest. Suppose that the car, initially at rest at the highest point, rolls down this track without friction. What speed will the car attain at the lowest point?
Suppose a roller-coaster car is moving 31.3 [m/s] at the bottom of the first hill, and...
Suppose a roller-coaster car is moving 31.3 [m/s] at the bottom of the first hill, and has an effective (rolling) friction coefficient 0.01 as it moves along the track. Predict how fast it would be at the top of the next hill, that is 30 [m] higher and 110 [m] farther along the track. This is on Earth, so use  g = 9.81 [N/kg]
Modern roller coasters have vertical loops like the one shown in the figure. The radius of...
Modern roller coasters have vertical loops like the one shown in the figure. The radius of curvature is smaller at the top than on the sides so that the downward centripetal acceleration at the top will be greater than the acceleration due to gravity, keeping the passengers pressed firmly into their seats. A) What is the speed of the roller coaster in m/s at the top of the loop if the radius of curvature there is 11 m and the...
In order to make the subsequent loop-de-loop on the ride, a 164 kg roller coaster car...
In order to make the subsequent loop-de-loop on the ride, a 164 kg roller coaster car needs to reach a final speed of 23.7 m/s at the bottom of a hill. If the car starts from rest at the top of the hill, how high must the hill be (in m)?