Question

A roller coaster car of mass 800 kg when released from rest at point A (height...

A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track.

  1. Draw below a free body diagram for the car at the top of the loop. If the speed of the car at the top of the loop (point C) is 17 m/s, what is the normal force at that point?
  2. If the car was released at a height 55 m and the speed at the top of the loop is 17 m/s, what is the amount of thermal energy produced by friction from the point of release to the top of the loop?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A roller coaster car of mass 900 kg when released from rest at point A (height...
A roller coaster car of mass 900 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 15.0 m. The car never loses contact with the track. Draw below a free body diagram for the car at the bottom of the loop. If the speed of the car at the bottom of the loop (point B) is 25 m/s, what is the normal force at that point?...
A roller-coaster car may be represented by a block of mass 50.0 kg . The car...
A roller-coaster car may be represented by a block of mass 50.0 kg . The car is released from rest at a height h = 48.0 m above the ground and slides along a frictionless track. The car encounters a loop of radius R = 16.0 m at ground level, as shown. As you will learn in the course of this problem, the initial height 48.0 m is great enough so that the car never loses contact with the track....
)A roller-coaster car may be represented by a block of mass 50.0 kg . The car...
)A roller-coaster car may be represented by a block of mass 50.0 kg . The car is released from rest at a height h = 45.0 m above the ground and slides along a frictionless track. The car encounters a loop of radius R = 15.0 m at ground level, as shown. As you will learn in the course of this problem, the initial height 45.0 m is great enough so that the car never loses contact with the track.Find...
A roller-coaster car (mass = 988 kg including passengers) is about to roll down a track....
A roller-coaster car (mass = 988 kg including passengers) is about to roll down a track. The diameter of the circular loop is 17.2 m and the car starts out from rest 41.0 m above the lowest point of the track. Ignore friction and air resistance. where x = 41.0 m and y = 17.2 ma) a)What is the force exerted on the car by the track at the top of the loop? ___kN b)From what minimum height above the...
A 356kg roller coaster starts at rest a height of 5R above the ground and goes...
A 356kg roller coaster starts at rest a height of 5R above the ground and goes around a loop-the-loop of diameter 2.3R. a. What is its speed at the top of the loop, if the work done by friction is zero? b. What is its speed at the end of the track at height of zero, if the work done by friction remains zero? c. Explain what the maximum work done by friction could be if the roller coaster is...
A 356kg roller coaster starts at rest a height of 5R above the ground and goes...
A 356kg roller coaster starts at rest a height of 5R above the ground and goes around a loop-the-loop of diameter 2.3R. a. What is its speed at the top of the loop, if the work done by friction is zero? b. What is its speed at the end of the track at height of zero, if the work done by friction remains zero? c. Explain what the maximum work done by friction could be if the roller coaster is...
5. A 356kg roller coaster starts at rest a height of 5R above the ground and...
5. A 356kg roller coaster starts at rest a height of 5R above the ground and goes around a loop-the-loop of diameter 2.3R. a. What is its speed at the top of the loop, if the work done by friction is zero? b. What is its speed at the end of the track at height of zero, if the work done by friction remains zero? c. Explain what the maximum work done by friction could be if the roller coaster...
A roller coaster car with a mass of 920.5 kg starts from rest at the top...
A roller coaster car with a mass of 920.5 kg starts from rest at the top of a 47.1 m hill labeled h1. The car travels to the bottom of the hill and continues up the next hill that is 12.5 m high and labeled h2. a.) Ignoring friction, what is the speed of the roller coaster car at the bottom of the hill? b.) Ignoring friction, what is the speed of the roller coaster car at the top of...
You are testing a new amusement park roller coaster with an empty car with a mass...
You are testing a new amusement park roller coaster with an empty car with a mass of 120 kg . One part of the track is a vertical loop with a radius of 12.0 m . At the bottom of the loop (point A) the car has a speed of 25.0 m/s and at the top of the loop (point B) it has speed of 8.00 m/s . As the car rolls from point A to point B, how much...
suppose you start a roller coaster car at the top of a hill with a height...
suppose you start a roller coaster car at the top of a hill with a height of 70 m and go around a loop- the- loop that has its bottom at ground level and has a radius of 15 m. If you weigh 70 kg. Calculate how heavy you will feel a.at the top of the loop b. at one of the sides of the loop Remember, the weight you feel is the normal force.