Question

This problem is composed of three parts: (a) For the reaction 1/2 O_2 +2H+ +2e− ⇌...

This problem is composed of three parts:
(a) For the reaction
1/2 O_2 +2H+ +2e− ⇌ H_2O

the standard electrode potential is + 1.23 V. Under standard-state conditions, if the electrode potential is reduced to 1.0 V, will this bias the reaction in the forward or reverse direction?  

(b) For the reaction
H_2 ⇌ 2H+ +2e−

the standard electrode potential is 0.0 V. Under standard-state conditions, if the electrode potential is increased to 0.10V, will this bias the reaction in the forward or reverse direction?

(c) Considering your answers to parts (a) and (b), in an H2–O2 fuelcell, if we increase the overall rate of the fuel cell reaction,
H_2 + 1/2 O_2 ⇌ H_2O
which is made up of the half reactions
H_2 ⇌ 2H+ +2e−
1/2 O_2 +2H+ +2e− ⇌ H_2O
what happens to the potential difference (voltage output) for the reaction?

Homework Answers

Answer #1

a) If the electrode potential is reduced to 1 V from 1.23 V ,the reaction is forward biased as the reactants will convert more into products , such that the potential moves to 1.23 V.

b) If the electrode is increased to 0.1V, then the reaction occurs in reverse direction as the products reunite to bring back the 0.0V.

c)When we increase the overall rate of fuel cell reaction, the potential difference for the reaction reamains constant (if temperature is not changed).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. In the two half reactions below: NAD+ + 2H+ +2e- ⥨ NADH + H+         E’0(V) =...
1. In the two half reactions below: NAD+ + 2H+ +2e- ⥨ NADH + H+         E’0(V) = -0.320 V                  Fumarate + 2H+ +2e- ⥨ succinate   E’0(V) = +0.031 If you merge these two half reactions into one reaction, what is the voltage change in this reaction (ΔE’0) 2. In the two half reactions below: NAD+ + 2H+ +2e- ⥨ NADH + H+         E’0(V) = -0.320 V                  Fumarate + 2H+ +2e- ⥨ succinate   E’0(V) = +0.031 If you merge these two half reactions into one...
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s)...
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s) 0.337 2H+(aq)+2e−→H2(g) 0.000 A copper, Cu(s), electrode is immersed in a solution that is 1.00 M in ammonia, NH3, and 1.00 M in tetraamminecopper(II), [Cu(NH3)4]2+. If a standard hydrogen electrode is used as the cathode, the cell potential, Ecell, is found to be 0.073 V at 298 K. Part A Based on the cell potential, what is the concentration of Cu2+ in this solution?...
A pH meter employs a voltaic cell for which the cell potential is very sensitive to...
A pH meter employs a voltaic cell for which the cell potential is very sensitive to pH. A simple (but impractical) pH meter can be constructed by using two hydrogen electrodes: one standard hydrogen electrode and a hydrogen electrode (with 1 atm pressure of H2 gas) dipped into the solution of unknown pH. The two half-cells are connected by a salt bridge or porous glass disk. a)Write the half-cell reactions for the cell. 1) No reaction. 2) H+(aq,1M)+H2O(l)→H3O+(aq), H2(g)→2H+(aq,1M)+2e−. 3)...
Using these standard reduction potentials: Reduction Reaction (1) H2O2 + 2e- --> 2OH- E (under std...
Using these standard reduction potentials: Reduction Reaction (1) H2O2 + 2e- --> 2OH- E (under std conditions) (V) = 1.77 (2) [Co(H2O)6]3+ + e- --> [Co(H2O)6]2+    E (under std conditions) (V) = 1.84 (3) [Co(NH3)6]3+ + e- --> [Co(NH3)6]2+ E (under std conditions) (V) = 0.10 Show that one can prepare an ammine complex from CoCl2 and hydrogen peroxide in the presence of ammonia but not in its abscene. You will need to write two redox reactions, calculate standard...
Electrochemical Cell Potentials Table 1: Electrochemical Cell Potentials Cell Measured Total Potential from Multimeter (V)1 Individual...
Electrochemical Cell Potentials Table 1: Electrochemical Cell Potentials Cell Measured Total Potential from Multimeter (V)1 Individual Half-Cell Potentials Cell Reactions5 ΔG (kJ)6 (Cu) Electrode Standard Potential (V)2 Metal Electrode Experimental Potential (V)3 Metal Electrode Theoretical Potential (V)4 Metal Electrode Potential % Error Cu | Sn 0.469 0.34 V 0.34-0.469 =-0.129 Cathode:       Cu2+ + 2e- -> Cu Anode:            Sn ->Sn2++ 2e- Net:          Cu2+ + Sn -> Cu + Sn2+ Cu | Al 0.796 0.34 V 0.34-0.796 =-0.456 Cathode:   Cu2+ +...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential Cl2(g)+2e−→...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential Cl2(g)+2e−→ 2Cl−(aq)   E0red = +1.359V NO−3(aq)+4H+(aq)+3e−→ NO(g)+2H2O(l)   E0red = +0.96V Answer the following questions about this cell. Write a balanced equation for the half-reaction that happens at the cathode.   Write a balanced equation for the half-reaction that happens at the anode.   Write a balanced equation for the overall reaction that powers the cell. Be sure the reaction is spontaneous as written.   Do you have enough...
Burning H2 (g) in the presence of O2 (g) proceeds by the following reaction:                         H2...
Burning H2 (g) in the presence of O2 (g) proceeds by the following reaction:                         H2 (g) + ½ O2 (g) --> H2O (g)                       eq. 1 In a fuel cell, the oxidation half-reaction occurring at the anode (a solid conductor) is: H2 (g) --> 2H+ (aq) + 2e- eq. 2 At the cathode (solid conductor), O2 is reduced: O2 (g) + 4H+ (aq) + 4e- --> 2H2O (l) eq. 3 Using Hess’s Law, estimate the heat released by oxidizing...
1. The table at right is similar to Table 18.1 in that it tabulates standard reduction...
1. The table at right is similar to Table 18.1 in that it tabulates standard reduction voltages of half reactions, but in this case the half reactions involve organic molecules important in biochemistry. Note here that the standard conditions are biochemically standard conditions (E°) where T = 25 °C but [H+] = 10-7 M (much less acidic than the [H+] = 1 M in Table 18.1). Oxidized form        Reduced form E°(V) Glutahione (oxidized) + 2e- -> Glutathione(reduced) -0.23 Fumarate...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential N2(g)+4H2O(l)+4e−→...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential N2(g)+4H2O(l)+4e−→ N2H4(aq)+4OH−(aq) E0red = −1.16V Zn+2(aq)+2e−→ Zn(s) E0red = −0.763V Answer the following questions about this cell. Write a balanced equation for the half-reaction that happens at the cathode.   Write a balanced equation for the half-reaction that happens at the anode.   Write a balanced equation for the overall reaction that powers the cell. Be sure the reaction is spontaneous as written.   Do you have enough...
Consider a hydrogen-oxygen fuel cell, an electrochemical cell that generates electricity from the chemical reaction 2...
Consider a hydrogen-oxygen fuel cell, an electrochemical cell that generates electricity from the chemical reaction 2 H2(g) + O2(g) → 2 H2O(l) . Yes, this is the same reaction as in additional question 1, but now we are looking at electrochemical aspects of it. On one side of the cell, H2 is pumped in, and the half-cell reaction is 2 H2(g) + 4 OH–(aq) → 4 H2O(l) + 4 e– ; at the other side, O2 is pumped in: O2(g)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT