Question

You have a 2nd order reaction that converts A and B to C with a rate...

You have a 2nd order reaction that converts A and B to C with a rate constant (k) of 0.001 mM‐1 min‐1 .  

a) If you start with 1 mM of A and 500 mM of B, how long will it take until 0.1 mM of A remains?

b) What is the name of the conditions the reaction in part (a) is being run under?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of...
1)A second order reaction has a rate constant of 3.7 M-1min-1. if the initial concentration of the reactant is 0.0100M, what is the concentration remaining after 15 min? a) .0099M b) .0056M c) .0025M d) .0064M 2) the rate constant for the first order decomposition of A at 500 degrees Celsius is 9.2 x 10 to the negative 3rd powers s-1. How long will it take for 90.8 % of a 0.500M sample of A to decompose a) 2.5 x...
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate...
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate constant of the reaction is 1.94 × 10-4 min-1. If the initial pressure of N2O is 4.70 atm at 730°C, calculate the total gas pressure after one half-life. Assume that the volume remains constant.
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate...
The decomposition of N2O to N2 and O2 is a first-order reaction. At 730°C, the rate constant of the reaction is 1.94 × 10-4 min-1. If the initial pressure of N2O is 4.70 atm at 730°C, calculate the total gas pressure after one half-life. Assume that the volume remains constant.
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and...
A liquid phase reaction A+B --> C+D is to be carried out in an isothermal and well mixed batch reactor. The initial moles of A and B are both 0.1 mole.  The rate of destruction of A is given by –rA = k*CA*CB, with k =  6.0 L/ (mol*min).  Calculate the amount of time (in minutes) that the reaction must proceed within a 10 L reactor in order to achieve a final concentration of A of 0.001 mol/L. Please express your answer to...
The reaction: A -> B+C is known to be second order with respect to A and...
The reaction: A -> B+C is known to be second order with respect to A and to have a rate constant of 0.225 M-1s-1 at 277 K. An experiment was run at this temperature where [A]o = 0.387 M. Calculate the concentration of B after 0.119 seconds has elapsed.
The reaction: A → B + C is known to be second order with respect to...
The reaction: A → B + C is known to be second order with respect to A and to have a rate constant of 0.00255 M-1 s-1 at 285 K. It is also known that ΔGorxn for this reaction is -2.13 kJ. An experiment was run at this temperature where only reactants were present ([A]o = 0.331 M). Calculate ΔGnonstandard after 14.1 seconds has elapsed.
The following is known about the reaction below: Chemical reaction: 2A-->2B The order of A is...
The following is known about the reaction below: Chemical reaction: 2A-->2B The order of A is second order If you start out with 2.75 M of A, after 5 minutes you will have 2.00M From these facts, determine: a) the rate law constant, K b) the first half life c) from time 0, how long will it take to reach 25% of the original concentration of A d) what is the concentration of A after 10 minutes?
This reaction: A--->B+C is known to be second order with respect to A and to have...
This reaction: A--->B+C is known to be second order with respect to A and to have a rate constant of 0.243M-1s-1 at 297K. An experiment was run at this temperature where [A]o=0.391M. Calculate the concentration of B after 0.161s have elapsed.
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g) ...
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g)  4 NO2(g) + O2(g) is k, = 3.38 x 10-5 s -1 at 25 C. What is the half-life of N2O5? What will be the partial pressure, initially 500 Torr, at ( a) 50 s; (b) 20 min, (c) 2 hr after initiation of the reaction?
The first-order reaction A--->B is carried out in a tubular reactor in which the volumetric flow...
The first-order reaction A--->B is carried out in a tubular reactor in which the volumetric flow rate is constant. deduce an equation that relates the volume of the reactor with the input and output concentrations of A, the velocity constant k and the volumetric flow rate. determine the volume of the reactor necessary to reduce the output concentration to 1% of the input concentration, when the volumetric flow rate is 10 dm ^ 3 / min and the specific reaction...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT