Question

The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g) ...

The rate constant for the first-order decomposition of N2O5 by the reaction
2 N2O5 (g)  4 NO2(g) + O2(g) is k, = 3.38 x 10-5 s
-1 at 25 C. What is the half-life of N2O5?
What will be the partial pressure, initially 500 Torr, at ( a) 50 s; (b) 20 min, (c) 2 hr
after initiation of the reaction?

Homework Answers

Answer #1

For the unit of k which is second ^-1 we can depict that this a first order reaction

for the first order reaction t1/2 = 0.693/k = 0.693 /3.38 X 10^-5 = 0.205 x 10^5 s or 2.05 X 10^4 s

As we know for first order reation A = Ao e^-kt

therefore P = Po e^-kt after 50 sec

P = 500 torr e^-3.38X 10^-5 x 50 = 499.155 torr

After 20 min = 20X60 = 1200sec

P = 500 e^-3.38X10^-5X1200 = 480.125 torr

After 2 hr = 2 X60 X60 x60 = 7200 sec

P = 500 e^-3.38 X10 ^-5 X7200 = 391 torr

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The rate constant for the first-order decomposition of a compound A in the reaction 2 A...
The rate constant for the first-order decomposition of a compound A in the reaction 2 A  P is k, =3.56 x 10-7 s-1 at 25°C. What is the half-life of A? What will be the pressure, initially 33.0 kPa at (a) 50 s, (b) 20 min, (c) 20 h after initiation of the reaction?
The decomposition of N2O5 is first order reaction. N2O5(g) decomposes to yield NO2 (g) and O2(g)....
The decomposition of N2O5 is first order reaction. N2O5(g) decomposes to yield NO2 (g) and O2(g). At 48 deg C the rate constant for the reaction is 1.2x10^-5 s^-1. Calculate the partial pressure of NO2(g) produced from 1.0L of 0.700M N2O5 solution at 48 degC over a period of 22 hours if the gas is collected in a 10.0L container
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3 s-1. Suppose we start with 0.0550 mol of N2O5(g) in a volume of 3.5 L. 2 N2O5(g) → 4 NO2(g) + O2(g) (a) How many moles of N2O5 will remain after 3.0 min? mol (b) How many minutes will it take for the quantity of N2O5 to drop to 0.005 mol? min (c) What is the half-life of N2O5 at 70°C? min
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3 s-1. Suppose we start with 0.0550 mol of N2O5(g) in a volume of 2.5 L. 2 N2O5(g) → 4 NO2(g) + O2(g) (a) How many moles of N2O5 will remain after 2.5 min? mol (b) How many minutes will it take for the quantity of N2O5 to drop to 0.005 mol? min (c) What is the half-life of N2O5 at 70°C? min
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1...
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1 at a given temperature. A. Find the length of time required for the total pressure in a system containing N2O5 at an initial pressure of 0.100 atm to rise to 0.200 atm . B. Find the total pressure after 110 s of reaction.
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g)...
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of N2O5 is 0.105 M, the concentration of N2O5 will be  Mafter 391 s have passed. 2) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.30×10−2 mol of N2O5(g) in a volume of 1.8 L . a) How many moles of N2O5 will remain after 6.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ? c) What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose we start with 2.60×10^−2 mol of N2O5(g) in a volume of 2.4 L . How many moles of N2O5 will remain after 4.0 min ? How many minutes will it take for the quantity of N2O5 to drop to 1.9×10^−2 mol ? What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we start with 2.90×10?2 mol of N2O5(g) in a volume of 1.5 L . a) How many moles of N2O5 will remain after 5.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 2.0×10?2 mol? c) What is the half-life of N2O5 at 70?C?
The following reaction is first order in N2O5 : N2O5 (g)→ NO3(g) + NO2(g) The rate...
The following reaction is first order in N2O5 : N2O5 (g)→ NO3(g) + NO2(g) The rate constant for the reaction at a certain temperature is 0.053/s Calculate the rate of reaction when [N2O5]=0.055M What would the rate of reaction be at the same concentration if the reaction was second order? Zero order? (Assume same numerical value for the rate constant but with correct units)